
REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

Public reporting burden for this collection of infomiation is estimated to average 1 hour per response, including the time for reviewing instmctions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any other aspect of this collection
of Infomiation including suggestions for reducing this burden to Washington Headquarteis Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of IWanagement and Budget,
Papen»ori< Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE ^DD-MM-YYVT)

08-01-2004
2. REPORT TYPE

Final Report
4. TITLE AND SUBTITLE

Power Electronics Building Blocks "Plug and Play"
Hardware and Software Control Architectures

6. AUTHOR(S)

Dr. Dushan Boroyevich

3. DATES COVERED (From - To)

June 20, 2001 to May 31, 2003
5a. CONTRACT NUMBER

Award No. N00014-01-1-0954

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMEfS) AND ADDRESS(ES)
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
OFFICE OF SPONSORED PROGRAMS
301 BURRUUS HALL
BLACKSBURG, VA, 24061-0249

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

OFFICE OF NAVAL RESEARCH
BALLSTON CENTRE TOWER ONE
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

12. DISTRIBUTION AVAILABILITY STATEMENT

"Approved for Public Release; distribution is Unlimited"

13. SUPPLEMENTARY NOTES

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

20040123 063
14. ABSTRACT

The main objective of this project has been to investigate means to standardize communications and control
systems in order to develop seamless "Plug and Play" (PnP) power electronics. The intent within has been to
pave the way for the development of reconfigurable low-cost, high reliability, and easy to use power processing
devices. Such devices, known as Power Electronics Building Blocks (PEBBs), would certainly encourage the
proliferation of power electronics into markets not yet penetrated due to a significant, critical lack of industrial
modularization and standardization in this area. In fact, the flexibility level that could be attained is such that it
would ensure significant increments of production, as well as manufacturing cost reductions due to economies
of scale.

15. SUBJECT TERMS

Power Electronics Building Blocks (PEBB), Static Power Converters, Control Software Architecture,
Distributed Control Architectures.

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

231

19a. NAME OF RESPONSIBLE PERSON

Dr. Dushan Boroyevich
19b. TELEPONE NUMBER {Include area code)

(540)231-4381

standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std 239-18

Center for Power Electronics Systems

Power Electronics Building Blocks

44 PLUG AND PLAY 95

Hardware and Software Control Architectures

FINAL REPORT

Prepared for:

Dushan Boroyevich, and Stephen Edwards
Sumithra Bhakthavatsalam, Rolando Burgos, Jeny Francis, Daniel Ghizoni,

Jinghong Guo, Konstantin Louganski, Xiangfei Ma, Parool Mody,

Sebastian Rosado, Wei Shen, Kuljeet Singh, and Luca Solero

Contract Information

Contract Number N000140010489

Title of Research PEBB Plug and Play

Principal Investigator Dushan Boroyevich

Organization Center for Power Electronics System at Virginia Tech

TABLE OF CONTENTS

TABLE OF CONTENTS 2

LIST OF FIGURES 6

LIST OF TABLES 10

1 EXECUTIVE SUMMARY 11

1.1 INTRODUCTION 11

1.2 UNIVERSAL CONTROLLER 18

1.3 CONTROL SOFTWARE ARCHITECTURE 19

1.4 HARDWARE MANAGER 19

1.5 PEBB-BASED POWER STAGE 20

2 UNIVERSAL CONTROLLER 22

2.1 SPECIFICATIONS 24

2.2 APPROACH. — 25

2.2.1 Architecture 25

2.3 BLOCK DESCRIPTIONS 28

2.3.1 DSP 28

2.3.2 FPGA 30

2.3.3 DAC 31

2.3.4 HEX Display 33

2.3.5 DIP Switches 35

2.3.6 PCI Mezzanine Interface 36

2.3.7 DSP Boot Flash 37

2.3.8 Peripheral Flash 38

2.3.9 Fiber Optic Interface 39

2.3.10 Peripheral expansion and debug connectors 39

2.3.11 Global control connector 40

2.4 METHODOLOGY 41

2.4.1 Universal Controller PCB Design 41

2.4.1.1 Quality Assurance 43

2.4.2 Issue Tracking Database 45

2.4.3 Revisions and Final Design 47

2.4.4 Final Design Modifications 48

3 SOFTWARE ARCHITECTURE 49

3.1 INTRODUCTION 49

3.2 DATAFLOW ARCHITECTURE 50

3.2.1 An Overview of the Dataflow Architectural Style 50

3.2.2 Elementary Control Objects (ECOs) 51

3.2.3 Data Channels 52

3.2.4 Dataflow Graph 53

3.2.5 Dataflow Architecture Real-time Kernel (DARK) 53

3.3 DATAFLOW APPLICATIONS IMPLEMENTATION 53

3.3.1 Open-loop 3-phase Inverter 53

3.3.2 Closed-loop 3-phase Inverter 54

3.3.3 Boost Rectifier 55

3.3.4 Closed-loop 4-leg Inverter 56

3.4 DATAFLOW ARCHITECTURE REAL-TIME KERNEL (DARK) 57

3.4.1 Real-time Kernel Design Requirements 57

3.4.2 DARK Architecture 58

3.4.2.1 Kernel Components 59

3.4.2.2 Kernel Features 62

3.4.2.3 DARK-Configurable Options 68

3.4.3 Kernel Evaluation 70

3.4.3.1 Overview of Applications 70

3.4.3.2 DARK Versions 71

3.4.3.3 DARK vs. MicroC/OS-II 75

3.4.3.4 DARK vs. Analog Devices-VDK++ 77

3.4.3.5 Summary of Results 79

3.5DARK-H- 81

3.5.1 DARK++ design overview 82

3.5.2 Kernel Architecture 83

3.5.2.1 DARK++ 83

3.5.2.2 Client Code 88

3.5.2.3 DARK-H-Kernel Features 89

3.5.2.4 Real-time Support 95

3.5.3 Experimental Evaluation 96

3.5.3.1 Performance Results 97

3.5.3.2 Discussion of the performance data 102

3.5.3.3 Summary 103

3.6 TRANSPARENT DISTRIBUTED MESSAGING 104

3.6.1 Design and implementation 105

3.6.1.1 Design 106

3.6.1.2 Data structure 108

3.6.1.3 Implementation 108

3.6.1.4 Fault Tolerance 110

3.6.2 Analytical performance assessment Ill

3.7 COMPARISONS BETWEEN THE DATAFLOW APPROACH, MATLAB SIMULINK, AND REAL-TIME

WORKSHOP PACKAGE 112

3.7.1 Overview of Mathworks Simulink andReal-Time Workshop Software 113

3.7.2 Comparison of Dataflow Approach and Simulink & Real-time Workshop Package 116

3.7.2.1 Software design procedure 116

3.7.2.2 B. Code structure and performance analysis .; 117

3.8 CONCLUSION 119

4 HARDWARE MANAGER 120

4.1 INTRODUCTION 120

4.2 DESIGN 123

4.2.1 FPGA Design 126

4.2.2 Communications Circuitry Design 128

4.2.3 Sensor Circuitry Design 132

4.3 OPERATION 134

4.4 TESTING 136

4.5 FUTURE RESEARCH 139

4.6 CONCLUSION 140

5 PEBB-BASED POWER STAGE 141

5.1 PEBB PARTITIONING STUDIES 141

5.2 ARCHITECTURE OF PEBB-BASED POWER ELECTRONICS SYSTEMS 141

5.2.1 Functional analysis and characteristics of the information flow in PEBB 143

5.2.2 Physical boundaries of the PEBB 145

5.2.3 Control Characteristics of Power Electronics Systems 147

5.2.4 PEBB Stage Characteristics 148

5.3 PEBB-BASED POWER STAGE DEVELOPED 150

5.3.1 Semiconductor Device Selection and Heat Sink Design 155

5.3.2 Power Losses 158

5.3.2.1 Conduction Losses 158

5.3.2.2 Switching Losses 161

5.3.3 Cooling System Design 163

5.3.3.1 Forced Air Cooling System 165

5.3.3.2 Water Cooling System 167

5.3.3.3 Considerations on Cooling System Power Supply 168

5.3.4 DC-Link Capacitors 169

5.3.5 DC-Link Bus Structure 173

5.3.6 AC Inductors and Capacitors 175

5.3.6.1 Inductor Design 178

5.3.6.2 Selected Capacitors 179

5.3.7 Contactors, fases, and power connectors 181

5.3.8Investigation on Soft-Switching Circuit Topology 183

5.3.8.1 ZCT-NZVTPEBB 185

5.3.8.2 IZCTPEBB 189

5.3.8.3 Numerical Example of Resonant Circuit Design for a lOOkW PEBB Phase-Leg 191

5.3.8.4 Numerical and Simulation Results (Pspice PEBB phase leg models) 195

5.3.8.5 Comparison Between the ZCT-NZVT and the IZCT Techniques 200

5.3.8.6 Design of the Resonant Circuit 202

5.3.8.7 Resonant Capacitor Selection (Electronic Concepts Inc.) 207

5.3.9 Experimental Verification of Soft Switched PEBBs 208

5.4 EXPERIMENTAL VALIDATION OF NEW PEBB MODULES 217

5.4.1 Buck dc-dc operation 217

5.4.2 Pulse Test Results 219

5.4.3 Impedance measurements 224

5.5 CONCLUSION 228

6 CONCLUSIONS 229

REFERENCES 231

LIST OF FIGURES

Fig. 1-1 PEBB-based distributed power electronics system 12
Fig. 1-2 Information flow throughout the power electronics system 12
Fig. 1-3 PEBB module defined for this project, a) Circuit schematic and b) functional equivalent modeled

as a SPDT switch 13
Fig. 1-4 Voltage-soiu-ce power converter topologies with highlighted PEBB modules showing the existence

of a common element between all of them 14
Fig. 1-5 Physical space distribution of components for the developed PEBB-based power electronics

system 14
Fig. 1-6 Universal Controller board developed and manufactured for this project 15
Fig. 1-7 a) Closed-loop control block diagram of a three-phase voltage-source inverter using elementary

control objects (ECO), b) Data flow architecture, and c) ECO 16
Fig. 1-8 Hardware Manager board mounted on one of the 33 kW PEBB modules 17
Fig. 2-1 Universal Controller Front 22
Fig. 2-2 Universal Controller Back 23
Fig. 2-3 Controller Functional Block Diagram 24
Fig. 2-4 Universal Controller Architecture 25
Fig. 2-5 FPGA Control Strategies 26
Fig. 2-6 Improved Bus Management 27
Fig. 2-7 Stacked 27
Fig. 2-8 DSP-FPGA Interface 29
Fig. 2-9 Selector State Machine 30
Fig. 2-10 FPGA Configuration Circuit 31
Fig. 2-11 DAC Block Diagram ^-32
Fig. 2-12 DAC State Machine ...33
Fig. 2-13 DAC timing diagram 33
Fig. 2-14 HEX Dispaly Block Diagram 34
Fig. 2-15 HEX Display State Machine 35
Fig. 2-16 DIP Switch State Machine 35
Fig. 2-17 DIP Switch State Machine 36
Fig. 2-18 PMC State Machine 37
Fig. 2-19 DFLASH - DSP interface 38
Fig. 2-20 FPGA and Cypress Communications chips interaction 39
Fig. 2-21 Shielding Planes 47
Fig. 2-22 Modifications to U24 48
Fig. 3-1 Dataflow architecture 51
Fig. 3-2 ECO structure 52
Fig. 3-3 Examples of computational ECO 52
Fig. 3-4 Example of a coordination ECO 52
Fig. 3-5 A/D driver ECO 52
Fig. 3-6 Open-loop three-phase inverter 54
Fig. 3-7 Closed-loop three-phase inverter 55
Fig. 3-8 Closed loop control for 3-phase boost rectifier 56
Fig. 3-9 Dataflow graph of control for closed-loop 4-leg inverter 57
Fig. 3-10 Thread control block 60
Fig. 3-11 Queue control block 61
Fig. 3-12 A firing rule 63
Fig. 3-13 Thread state diagram 64
Fig. 3-14 Comparison of context switching times 65
Fig. 3-15 Performance of DARK versions for the Open-loop Inverter application 73
Fig. 3-16 Performance of DARK versions for the Closed-loop Inverter application 74

Fig. 3-17 Performance of DARK versions for the Boost Rectifier application 75
Fig. 3-18 Performance comparison between Full-featured DARK with message queues and MicroC/OS-II.
 76

Fig. 3-19 Performance comparison between Full-featured DARK with message queues and Analog
Devices-VDK-H- 79

Fig. 3-20 Summary for results obtained while using Open-loop Inverter application 80
Fig. 3-21 Summary for results obtained while using Closed-loop Inverter application 80
Fig. 3-22 Summary for results obtained while using Boost Rectifier application 81
Fig. 3-23 DARK-H- System Diagram 84
Fig. 3-24 The getlnstanceQ method 85
Fig. 3-25 ECO Class Interface 86
Fig. 3-26 DataChannel Base Class Interface 87
Fig. 3-27 ScalarDataChannel Template Class Interface 87
Fig. 3-28 StringDataChannel Class Interface 88
Fig. 3-29 Byte_Data_Channel Class Interface 88
Fig. 3-30 Template for ECO Adc_Va 89
Fig. 3-31 Default action for ECO AdcVa 89
Fig. 3-32 Thread state diagram 90
Fig. 3-33 Performance results for the two kernels with message queues 101
Fig. 3-34 Performance results for the two kernels with mailboxes 102
Fig. 3-35 Dataflow messaging protocols 107
Fig. 3-36 Data structures 109
Fig. 3-37 Packet structure 109
Fig. 3-38 Relationships between Math Works MATLAB, Simulink and Real-time Workshop software

packages 114
Fig. 3-39 Pseudo code of Embedded Coder generated C program 115
Fig. 3-40 ModelStep structure .•• 116
Fig. 3-41 Simulink Model of voltage close loop control of 3-phase inverter ...I.....117
Fig. 3-42. Cbde performance comparison „;......;.;..; 119
Fig. 4-1 New Hardware Manager developed for the PnP PEBB-based power electronics systems, a) top and

b) bottom views 121
Fig. 4-2 New PEBB module using the Hardware Manager 122
Fig. 4-3 PCB Layout of the Hardware Manager 123
Fig. 4-4 Virtex-series device comparison 124
Fig. 4-5 Hardware Manager's modular structure 125
Fig. 4-6 Hardware Manager's sectioned functions 126
Fig. 4-7 Layout of the FPGA 127
Fig. 4-8 Areas of concern in mounting of the FPGA 128
Fig. 4-9 Termination Circuit for Differential Signals in both Receiver and Transmitter Circuits 129
Fig. 4-10 Optical Receiver Circuit 130
Fig. 4-11 Optical Transmitter Circuit 130
Fig. 4-12 Layout of the communications circuitry 131
Fig. 4-13 Composite Print of TAXI2CYP Board 132
Fig. 4-14 Voltage sensor schematic diagram 133
Fig. 4-15 Current sensor schematic diagram 133
Fig. 4-16 Schematic diagram for the Temperature Sensor 134
Fig. 4-17IPM Module 135
Fig. 4-18 Dual Module IGBT Gate Drive Circuit 135
Fig. 4-19 New PEBB module mounted on the removable slide featuring the Hardware Manager and main

power connectors 137
Fig. 4-20 Universal Controller in loop with one PEBB 137
Fig. 4-21 Single phase dc/dc converter configuration 138
Fig. 4-22 Full bridge inverter configuration 138
Fig. 4-23. Interfaces of the Power Electronics Building Block (PEBB) 139
Fig. 5-1 General PEBB Architecture 142
Fig. 5-2 Information capacity at the different levels of control 143

Fig. 5-3 The energy figure of merit (similar to something?, ha) The abscissa refers to: 1 semiconductor
devices, 2 DC capacitor, 3 line inductor, 4 line capacitor, 5 other auxiliary components 145

Fig. 5-4 Calculation of the unusable power. Yellow: power merit at the different components; magenta:
percentage of non-usable capacity; blue: product of the previous two magnitudes giving the non-
usable power at the system components 146

Fig. 5-5 Non-usable power characteristic and PEBB boundary based on the limit of affordable non-usable
capacity 147

Fig. 5-6 PEBB Phase Leg Structures 150
Fig. 5-7 Interfaces of the Power Electronics Building Block (PEBB) 150
Fig. 5-8 Power stage subsystem of the Plug and Play demonstration system 151
Fig. 5-9 PEBB-based topologies for the Plug and Play power system 152
Fig. 5-10 Power system schematic partitioning of the different components pertaining to the Plug and Play

physical structure system 153
Fig. 5-11 The original fixed-ball bearing slides used to mount the phase legs were later replaced by

removable single slides for ease of operation 154
Fig. 5-12 Frontal view of cabinet 155
Fig. 5-13 Dual Module IGBT Gate Drive Circuit 157
Fig. 5-14IPM IGBT Gate Drive Circuit 157
Fig. 5-15 Phase-Leg Equivalent Thermal Circuit 164
Fig. 5-16 Liquid Plates: Parallel Connection Configuration 168
Fig. 5-17 DC-Link Voltage 170
Fig. 5-18 DC-Link Voltage: zoom 170
Fig. 5-19 DC-Link Capacitor Current •••• 171
Fig. 5-20DC-Link Capacitor Current: zoom 171
Fig. 5-21 DC-Link Capacitor Current: zoom 172
Fig. 5-22 DC-Link Capacitor Current: zoom 172
Fig. 5-23 DC-Link Capacitor Current: zoom .-... 173
Fig; 5-24 PEBB, sliding rails, dc-link connectors and busbars of the cabinet under construction....;..:.:.!; 174
Fig. 5-25 AC-Phase Current: zoom: 175
Fig. 5-26 AC-Phase Current....;...: '■ .:.:....;....;.;; 176
Fig. 5-27 AC-Phase Current: zoom •••• 176
Fig. 5-28 Load-Phase Current (top) and Voltage (bottom) 177
Fig. 5-29 AC-Phase Capacitor Current 177
Fig. 5-30 Closeup view of the AC inductors positioned beneath the fans in the cabinet 178
Fig. 5-31 AC capacitors view inside the cabinet. These are directly positioned and connected to the output

terminals of the AC inductors 180
Fig. 5-32 Contactors and fiises scheme for the experimental prototype 181
Fig. 5-33 Closeup view of the contactors, fiises and control power connectors 182
Fig. 5-34 View of the power terminal blocks at the bottom of the cabinet structure 182
Fig. 5-35 Soft switching PEBB schematic 184
Fig. 5-36 State-Plane Trajectory 185
Fig. 5-37 State-Plane Trajectory 189
Fig. 5-38 Main leg currents 195
Fig. 5-39 Auxiliary leg currents 196
Fig. 5-40IZCT (rated conditions of operation) 197
Fig. 5-41 Main leg currents 198
Fig. 5-42 Auxiliary leg currents 199
Fig. 5-43 ZCT-NZVT (rated conditions of operation) 200
Fig. 5-44 Soft switching PEBB schematic built from old phase-leg by adding auxiliary resonant circuit. 208
Fig. 5-45 Downwards and lateral views of Softswitching PEBB 209
Fig. 5-46 Experimental setup used to test appropriate operation of the softswitching PEBBs 209
Fig. 5-47 Turn on and turn off transients for IZCT softswitching algorithm 210
Fig. 5-48 Turn on and turn off transients for ZV-ZCT softswitching algorithm 210
Fig. 5-49 PnP compliant cabinet 211
Fig. 5-50 Test soft-switched PEBB on the cabinet 212
Fig. 5-51 Circuit diagram of DC-DC test for soft-switched PEBB 213

Fig. 5-52 DC-DC test waveforms of soft-switched PEBB, with hardware manager generating constant duty
cycle 214

Fig. 5-53 DC-DC test waveforms of soft-switched PEBB, with a constant duty cycle (0.4) sent from UC.
 215

Fig. 5-54 DC-DC test waveforms of soft-switched PEBB, with a constant duty cycle (0.8) sent from UC.
 215

Fig. 5-55 Experimental set-up schematic for testing the new PEBB modules 216
Fig. 5-56 New PEBB operating in Buck dc-dc converter mode 218
Fig. 5-57 Turn off transient of new PEBB operating in Buck dc-dc converter mode 219
Fig. 5-58 Pulse test schematic using a new PEBB module for EMI verification 220
Fig. 5-59 Pulse test applied for EMI verification 220
Fig. 5-60 Experimental results showing that the current returns to zero after 12ms. 221
Fig. 5-61 Experimental test with series diode in dc path to avoid negative currents in the power supply. 222
Fig. 5-62 Expanded view of transient in Fig. 5-61 223
Fig. 5-63 High frequency oscillations observed 224
Fig. 5-64 DC Impedance measurement schematic 225
Fig. 5-65 DC Impedance test on the cabinet 226
Fig. 5-66 Load impedance measurement setup 227
Fig. 5-67 Load impedance measurement results 228

LIST OF TABLES

Table 2-1 List of high-level commercial communication chips 41
Table 2-2 PCB Attributes 43
Table 2-3 Issue Tracking Database 46
Table 3-1 Configuration options available in DARK 69
Table 3-2 Comparison of major properties of the kernels 70
Table 3-3 Kernel operations per switching cycle 71
Table 3-4 Performance of DARK versions for the open loop application with message queues 72
Table 3-5 Performance of DARK versions for the open loop application with mailboxes 72
Table 3-6 Performance of DARK versions for the closed loop application with message queues 73
Table 3-7 Performance of DARK versions for the closed loop application with mailboxes 73
Table 3-8 Performance of DARK versions for the boost rectifier application with message queues 74
Table 3-9 Performance of DARK versions for the boost rectifier application with mailboxes 74
Table 3-10 Performance of DARK versions for the boost rectifier appUcation with message queues 76
Table 3-11 Performance of DARK versions for the boost rectifier application with mailboxes 76
Table 3-12 Performance comparison between Full-featured DARK with message queues and MicroC/OS-II
 77

Table 3-13 Performance comparison between Full-featured DARK with message queues and Analog
Devices-VDK-H- 78

Table 3-14 Configurable options in DARK-H- 95
Table 3-15 Performance Results in terms of number of instruction cycles for the open-loop inverter- with

message queue data channels 98
Table 3-16 .Performance Results in terms of number of instruction cycles for the closed-loop inverter- with

message queue data channels '■ ..••. 98
Table 3-17 Performance Results in terms of number of instruction cycles for the boost rectifier-with

message queue data channels 99
Table 3-18 PerJFormance Results in terms of nimiber of instruction cycles for the open-loop inverter - with

mailbox data channels 99
Table 3-19 Performance Results in terms of number of instruction cycles for the closed-loop inverter- with

mailbox data channels 100
Table 3-20 Performance Results in terms of number of instruction cycles for the boost rectifier - wdth

mailbox data channels 100
Table 5-1 Functional Analysis of some power electronics applications in utility systems 149
Table 5-2IPM Components Data 163
Table 5-3 Power Losses 163
Table 5-4 Forced Convection Heat-Sink 165
Table 5-5 Water Cooled Heat-Sink 167
Table 5-6 Theoretical calculation results and simulation results (between parenthesis) 194

10

1 EXECUTIVE SUMMARY

1.1 Introduction

POWER ELECTRONICS BUILDING BLOCKS, "PLUG AND PLAY" HARDWARE AND CONTROL

ARCHITECTURES. The main objective of this project has been to investigate means to standardize

communications and control systems in order to develop seamless "Plug and Play" (PnP) power

electronics. The intent within has been to pave the way for the development of reconfigurable

low-cost, high reliability, and easy to use power processing devices. Such devices, known as

Power Electronics Building Blocks (PEBBs), would certainly encourage the proliferation of

power electronics into markets not yet penetrated due to a significant, critical lack of industrial

modularization and standardization in this area. In fact, the flexibility level that could be attained

is such that it would ensure significant increments of production, as well as manufacturing cost

reductions due to economies of scale.

To this end, a PEBB-based distributed power electronics system architecture was proposed,

bulk, and evaluated. This system is depicted in Fig. 1-1, where it clearly shows the hierarchical

structure of the developed control system, as well as its main constituents, i.e. the Universal or

application Controller, and the PEBB modules with their Hardware Managers. Fig. 1-2 on the

other hand shows the information flow in the proposed system, where control signals, together

with state variables measurements and various commands are transmitted through and across

hierarchies using the communications protocol PESNet. This protocol has also been developed in

this project and implemented by means of a double-ring structure fiber optic network. Implicit in

this figure is the software and control software architecture which enables the PnP capabilities of

this system, exuding in modularity, reconfigurability, and reusability.

The specific structure and partitioning of the proposed power electronics system was

determined through thorough studies of power conversion systems. Particularly, voltage-source-

based power converter structures were considered, representing if not all high power structures all

high power applications. From these, a common element was identified and through appropriate

correspondence with the control system structure a PEBB module was defined. Particularly, the

PEBB was defined as a converter phase-leg, functionally equivalent to a Single-Pole-Double-

11

Power
Stagey^

Information System

Universal
Controller
& Software

Control
Network

PEBB-Ba$ed
Power

Converters

lower-System

Fig. 1-1 PEBB-based distributed power electronics system.

Information System

^—~T4-

Fig. 1-2 Information flow throughout the power electronics system.

12

a) b)

^ac+V

Fig. 1-3 PEBB module defined for this project, a) Circuit schematic and b) functional

equivalent modeled as a SPOT switch.

Throw (SPOT) switch as shown in Fig. 1-3. Fig. 1-4 shows how this PEBB is found in most

voltage-source power converter structures employed for medium to high power applications.

The final implementation of the proposed power electronics system is depicted in Fig. 1-5,

where again the main constituents can be easily identified, as well as secondary components

which nonetheless represent critical system functions. Specifically, the electromechanical

structure which must accommodate the new distributed power electronics system, which must

cope with, solve, and minimize space distributions and orientations, unwanted parasitic effects,

all the while providing the main PnP functionalities, that is ease of reconfiguration,

maintainabiUty, supportability, and modularity. Fig. 1-5 also shows what have been defined as

passive PEBBs. These are mainly reactive elements required for proper converter operation and

harmonic and EMI fiUering, and protection and operating devices such as fuses and contactors.

This project did not consider fliUy integrating these passive PEBBs, nonetheless they have been

physically located and distributed accordingly, and have been provided with integrated protective

devices.

As previously stated, the main drive of this project has been to investigate means to

standardize control and communication systems in order to develop PnP power conversion

systems. Consequently, the main work was focused in the development of 1) the Universal

13

Single-Ended

^<.

I

\\

y j/

\\
y \

Three-Phase

Half-Bridge

7

I

7

I

7

I

7

L

7

I
Multi-Phase

Full-Bridge

^

I

1 7

I

Multi-Level

Fig. 1-4 Voltage-source power converter topologies with highlighted PEBB modules
showing the existence of a common element between all of them.

II
PEBB

IL JIM
PEBB

iilHM

PEBB
1 il il M

PEBB

PEBB
i n II li

PEBB

PEBB

PEBB
iTfr^ iiiii iBtii ^fi

inductors, harmonic filters, EMI filters
znfflz jji TfflT Tiff

Contactors, protection elements
Mitiii liiiii nil It

DC-Link Caps, Ultra-Caps or Batteries

nil nil
Fig. 1-5 Physical space distribution of components for the developed PEBB-based power

electronics system.

14

FRONT BACK

Fig. 1-6 Universal Controller board developed and manufactured for this project.

Controller, 2) the communications and control software architectures, and 3) the Hardware

Manager.

- It can be said that the Universal Controller effectively achieved all its design goals, offering

powerfiil computational resources as well as a several communication interfaces for ease of

development, operation, and interaction. BuiU over a DSP/FPGA digital system architecture, the

Universal Controller now includes interfaces such as: JTAG for the DSP and FPGA, 88 I/O pins

connected to the FPGA, and a PCI interface. Fig. 1-6 shows a picture of the Universal Controller.

- The PESNet protocol based on industrial control system protocols was further upgraded to

include enhanced communication capabilities to support the PnP capabilities of the proposed

power conversion system implemented over a dual ring fiber optic network. On the other hand a

control software system was built over standardized Elementary Control Objects (ECO) featuring

a high degree of reusability and great ease of reconfiguration for different fimctions and

applications. All this was developed over an especially designed and developed kernel DARK,

which provided a high performance platform for running dataflow applications. Fig. 1-7 shows a

closed-loop control implementation using the proposed control software architecture.

15

ADC /> ADC_A
driver

fiJDC E ADC_B
driver

Fire Look_up
Sin tabie

sine

Fire Loolt_up
Cos tabie

cose

abc-dqo

q ^d_rel''q_ref

2-D Reguiator

dqo-aPy

PEBB1 driver da

PEBB2 driver
db

PEBB3 driver
dc

b) 1-D Digital Filter

X, = f(Xo Xk)
^Xf

X, Xf: float

X,

1-D Regulator

\= r(X, X„,) X,_re,

X,X,„,Xr: float X2 ref

X,-
Xb-

X.-
e-

abc-dqo

'Vqo ~ abc_d(jo "abc

x,
X,
x„

c)

3-D Modulator

V1 V2 VO
y 'i It it

d1 d2 dO

PWM Dispatcher

Xa, Xb, Xc, 9 , Xd, Xq, Xo: float

2-D Regulator

Xf - KXi .X2 X, fj, X2 ret) -X, ,

X^.Xj, X, ^, X2 ref, X, r X2 ,: float

Fig. 1-7 a) Closed-loop control block diagram of a three-phase voltage-source inverter

using elementary control objects (ECO), b) Data flow architecture, and c) ECO.

16

Fig. 1-8 Hardware Manager board mounted on one of the 33 kW PEBB modules.

- The Hardware Manager, depicted together with a PEBB module in Fig. 1-8, was designed to

control the newly developed 33kW PEBB modules. Built over a Xilinx FPGA, it supports the

dual-ring-based PESNet communications protocol, and features several built-in protection

devices and debugging features for aiding in the system design. Its new design exploits all the

capabilities provided by VHDL coding, presenting great programming and reconfiguration

capacities.

A brief description of the main achievements for each of the above mentioned topics is provided

in the sections hereinafter.

17

1.2 Universal Controller

The main goals for developing a Universal Controller for PnP PEBB-based power electronics

systems have been firstly to reduce their design cycle time and cost, secondly to increase their

flexibility, modularity, and reconfigurability, thirdly to increase their reliability, supportability,

and maintainability; and fourthly to increase their overall capacities and capabilities. As shown in

our previous work on PnP PEBB-based power electronics systems, distributed control

architectures at converter level makes these systems open, flexible, and simple to use. The

Universal Controller plays a key role in this scheme, as it is in charge of performing all high-level

application-oriented tasks. For this purpose, this controller was designed to offer enhanced and

more powerful computational resources as well as a variety of communication interfaces, and was

buih over a DSP/FPGA digital system architecture. As such, the Universal Controller is a main

constituent of the PnP PEBB-based power electronics system structure proposed and developed in

this project.

From the goals aforementioned, the design cycle of a power converter is one of considerable

importance given its implications on development and production costs. This cycle time is highly

affected by the need to develop a new control system for every application, reason why the usage

of a Universal Controller becomes apparently attractive. This allure is further increased when

standardized interfaces are defined and established between all the system components. This

project supports this goal by including the following interfaces to aid in the design of the control

system, namely JTAG for the DSP and FPGA, 88 I/O pins connected to the FPGA, and a PCI

interface. These I/O pins have a functional purpose after debugging, but they proved to be

extremely usefiil during this stage as well, as they added excellent visibility into the FPGA code

during runtime. The PCI interface on the other hand provided great visibility over the whole

system by easily enabling the designer to monitor and access variables while the controller is

running. This particular interfacing mode is still under development in collaboration with

Northrop Grumman Corp.

A key factor for a distributed power electronics systems is the actual communication between

its components. This was addressed in this project by developing and upgrading PESNet, a

protocol based on the industrial protocol MACRO. Such a network has the advantage of allowing

for all components to be accessed and programmed through a single device, the Universal

Controller. Also, PESNet employs a dual-ring fiber-optic network structure, which greatly

increases the overall system reliability by providing dual and backup paths for accessing each

component.

18

1.3 Control Software Architecture

It has been empirically shown that the software architecture employed on PnP PEBB-based

power electronics systems is just as important as the actual algorithms and data structures

employed. On this matter, this project continued our previous work on software for embedded

control systems, and proposed a power electronics control software buih over standardized

modules -Elementary Control Objects (ECO)- having a high degree of reusability and

reconfigurability. For this purpose, a kernel dubbed DARK was especially designed, evaluated,

and successfully compared with commercially available kernels for industrial control systems.

DARK met the goal of providing a high performance platform for running dataflow appUcations

as in the proposed embedded control for power electronics applications.

Further improvements for this embedded control kernel were attained by programming it in

C++, which provided a better and more structured way of extending data chaimels for user-

defined data structures. Also, a distributed, transparent messaging protocol for PnP PEBB-based

power electronics systems was designed, which allowed for transparent messaging between

controllers across a multi-controller application network. Finally, in order to assess the

effectiveness and feasibility of the proposed and developed control, kernel, and protocol system

several commercial software packages were investigated. Though the commercial software

presented a fHendlier user interface through the use of a graphic development environment, the

proposed system provided more flexible real-time control options, eased the design of distributed

control systems, and required significant less redesign efforts.

1.4 Hardware Manager

The proposed PnP PEBB-based power electronics system architecture has as main power

device controller the Hardware Manager, or simply put, the power stage controller. This

controller is basically responsible for low level hardware oriented tasks. It is intrinsically

application-blind, it actuates over its power components, and receives commands -from a

Universal Controller- and transmits gathered information from its restricted system, i.e. values of

current, voltage, temperature etc. Such a controller was completely designed, manufactured and

successfully tested in this project. This new Hardware Manager was designed as part of the new

33kW PEBBs also built in this project for testing and verification purposes. The new Hardware

Manager employs new technology, making it fully compatible with the Universal Controller and

capable of fully implementing the newly developed PESNet protocol with enhanced capabilities.

19

It is built over a Xilinx FPGA, supports the dual-ring communications network in use, has buiU-in

protection devices, as well as several debugging features for aiding in its design.

On a board level, the Hardware Manager design was done exploiting all the experience

attained with the Universal Controller. Following a PEBB modular approach, every functional

part of it, from communications to sensors, is basically independent of each other. In fact, some

subsystems have the exact same circuit structure as in the Universal Controller. Software-wise,

the VHDL code has been individually addressed per functions, which significantly simplifies any

programming and troubleshooting required when modifying its code. Also, its communications

capabilities were proven to every expectation, and showed an excellent performance, as well as

the sensors operation. The Hardware Manager has sensors for measuring the power stage current

and voltage, as well as the on-board temperature. This last reading is used as a protection device

together with an over-current signal generated by the IGBT IPM itself. In all, the new

PEBB/Hardware Manager has proven all its capabilities and usefulness for PnP PEBB-based

power electronics systems.

1.5 PEBB-Based Power Stage

Up to the appearance of the PEBB concept for power electronics systems, medium to high

power static power converters were mostly designed and manufactured on a customized, per

application basis. For tailored designs as these ones significant optimizations in electrical,

magnetic, and mechanical systems may be achieved, thus minimizing unwanted effects such as

losses, parasitic inductances, capacitances, EMI, resonances etc. A PEBB-based system however

lacks this optimization capability in the sense that it must provide for unparalleled modularity and

reconfigurability, the very essence of its existence. In fact, a PEBB-based system is built having a

variable space distribution, ideally an unbounded one which allows for easy reconfiguration,

modularity and scalability. Consequently, these systems must deal with all parasitic effects

associated to power electronics in order to operate successfiilly and become a feasible alternative.

It is evident then that in order to minimize these obstacles intrinsic to PEBB-based systems a

different design approach is required. Particularly, it now becomes desirable to design a

distributed power stage structure in order to minimize all the aforementioned unwanted effects. A

first step was hence taken in this project by performing a partitioning study, which determined

both physical and information boundaries wherefrom to define PEBB modules in power

electronics systems. From these analyses feasible power stage partitioning criteria were defmed,

as well as information layers and communication and data channels applicable to distributed

20

control systems. Correspondingly, a power stage system was designed based on the temporal and

physical distributions and partitions previously defined. New PEBB modules using the newly

designed Hardware Manager were designed and manufactured, previously built PEBB modules

were upgraded to accommodate for soft switching capabilities, and an appropriate cabinet

structure supporting all the PEBB concept capabilities was built. All of these were successfully

tested so far.

From the work performed in this project, future improvements and actual modifications that

will be necessary to make the electrical system structure fiilly compatible with the PEBB concept

have been determined. Specifically, there is an apparent need for optimized design for busbars

and busplanes for the DC bus. There's also a need for defining active and passive PEBBs, and for

designing, specifying, and standardizing connectors, protection devices, low power distribution

devices, etc.

21

2 UNIVERSAL CONTROLLER

The Universal Controller is used to control PEBB modules. It is power level independent,

and controls other modules via a fiber optic network. The controller has been through two

revisions, and nine revised controllers were made based on issues found in the first revision. Fig.

2-1 and Fig. 2-2 show the universal controller.

'■ *■

Fig. 2-1 Universal Controller Front

22

Fig. 2-2 Universal Controller Back

The universal controller has been designed to address the needs of the majority of power

electronics appHcations in medium to large power electronics converters. Large systems need

communication interfaces, status indicators, debugging tools, advanced control algorithms and

fault tolerance. We kept this in mind when designing the controller. Also, in large systems

components of converters can be distributed across large areas. For that purpose we have

developed a communication protocol called PESNet, which allows these modules to be connected

together in a fault tolerant fiber optic ring. This network structure was partially used in the

preceding project, as it was just a single ring and hence not fault tolerant.

23

Future
Expansion
Capability

/

Multiprocessor
Expansion

\

Peripheral
Support

t
Single

Power Unit
CPU

General
Analog and

Digital
I/O

i L

1 '

Serial Interface
&

System Level
Interface

l\iemory
Standard

Bus
Interface

Fig. 2-3 Controller Functional Block Diagram

2.1 Specifications

There are several features desirable in a distributed controller. The most obvious is the need

for a CPU to execute code written to control the application. The controller should be able to

communicate with the external world in which it exists. This is done via standardized system

interfaces. The standardized interfaces allow the controller to be quickly integrated into a system

without having to design customized interfaces and support. Scalability is also a desirable

property. Applications will require more than one controller. There should be a way for

multiple controllers to work together to solve large problems. It is impossible to predict and

implement every requirement for every application. There should be some way to expand the

controller capabihty for unpredictable future needs. A block diagram of the fundamental

controller properties is shown in Fig. 2-3.

It is desirable to have a modular approach to implementation so that each module can be

developed and tested incrementally. Once one module is debugged, it should remain functional

while other modules are being developed. It should also be possible to deactivate one module if it

is not required in the design. Also, being universal means that the controller should be portable

across applications. The strategy to implement the controller should support reconfiguration to

allow this.

24

DSP
f-i V (D O

DATA(63..0]

ADDR[31..0l

§f &
III

FPGA
Confguratron

PROM

FPGA

Transceiver

PDATAP1..0]

PADDR[18..0]

Transceiver

Expansion I/O

PMC Bus
Connectors

Fig. 2-4 Universal Controller Architecture

2.2 Approach

2.2.i Architecture

The controller architecture consists of two main busses bridged by the FPGA. This approach

allows for incremental debugging of the controller without having to worry about every block at

once. This also allows for future architectures in which the FPGA could interact with the

peripherals without having to know what the DSP is doing. An alternative would be to have a

singe bus with every peripheral coimected to it. The controller architecture is shown in Fig. 2-4.

There were two approaches possible when implementing the FPGA control code. The first

approach allowed the thread of execution to pass from the DSP, through the FPGA, and into to

the ASIC, which would service the request, return control to the FPGA, which would in turn

return control to the DSP.

25

ASIC

Fig. 2-5 FPGA Control Strategies

The second approach is an asynchronous approach, where the DSP would interface with a set

of control registers in the FPGA that would perform a specific task, most likely involving an

ASIC. This architecture would require the FPGA to implement a command processor that would

execute the commands placed in the command buffer in the FPGA by the DSP, thus creating a

second thread of execution. The second thread of execution would need to synchronize with the

first one in some way. This complicates the interface between the DSP and the FPGA. It would

also mean that after the write to the FPGA returns, there would be no direct way to tell if the

operation has completed or not. Reads from ASICs would also be complicated, as the data is not

immediately available in the FPGA, and so there would first have to be a request, and then later,

the data would become available after the FPGA had retrieved it. These two approaches are

illustrated in Fig. 2-5.

As more and more control blocks were implemented, the maximum clock speed of the FPGA

started to drop very fast. Eventually, it became difficult to manage each block due to the

increased propagation delay within the FPGA. Each control block would have to have address,

data, and control lines. Most blocks passed data directly fi-om the DSP to the FPGA directly

instead of manipulating the data. Taking this into account, a new architecture was developed that

allowed the control blocks to control the data flow while not actually "seeing" the data

themselves. Control data that is stored in the FPGA to set some control line, such as the blanking

control for the hex display goes to a set of registers. This new approach is shown in Fig. 2-6.

26

device 1

device 2

device n —i

ADDRi31:ai|-
Selector

DAT7kl3l!!q|—^'^—Z'^' ^^

r^ x:

_rv

\.

Q D
EN
<

Control
Registers

PADDR[31..0]

PDATA[31..0]

Fig. 2-6 Improved Bus Management

DSP FPGA

DSP FPGA

. . _

DSP FPGA

Fig. 2-7 Stacked

27

In this architecture, several controllers can be connected together for tasks that require larger

processing power. When the controllers are stacked, the DSPs and FPGAs for all boards appear

in parallel with each other as shown in Fig. 2-7. The FPGA uses the ED of the DSP as part of its

address scheme. It is therefore possible for a DSP to access a resource on the FPGA of another

board as easily as it would access a resource on one of its own.

2.3 Block Descriptions

2.3.1 DSP

The DSP chosen is an Analog Devices ADSP-21160 80 MHz floating point DSP. The DSP

has the following features that make it attractive for use in advanced control architectures:

• Single Instruction, Multiple Data execution

• Intrinsic support for multi-processing

• Built-in multiply and accumulator, barrel shifter, and ALU

• Pipelined execution and instruction loading via Data and Address Generators

• Host Port Interface

• 2 Synchronous Serial Ports

• Built-in control of external port

The FPGA supports the DSP's access to other peripherals on the controller. The DSP

interface has been designed according to the architecture described in ###. The DSP

communicates with the FPGA using the data bus, the address bus, and some control signals as

shown in Fig. 2-8.

28

PLL
Clock

Buffer/MUX

ID[2..0]

DSP

Upper Stacking Connector

ADDR[31..0]

DATA[31..0]

READ#

WRITE#

BMS#
—►

ACK#

FPGA

Lower Stacking Connector

Fig. 2-8 DSP-FPGA Interface

When the DSP sends information to the FPGA, it first sets up the data and addresses, and

then controls the READ# and WRITE# signals. The DSP supports different types of peripherals

intrinsically such as SDRAM and SBSRAM. To simphfy the interface to the DSP, the FPGA

interface was chosen to emulate SRAM. While the FPGA was processing the DSP's request, the

FPGA would hold the DSP in a wait state until it is finished. The DSP is packaged in a 400-ball

Ball Grid Array (BGA) package.

29

SELECTED = '0'
ACK# = 'r

DEV_EN = f(ADDR[28..25])

ACK# = '1'

ACK# = '0'

DEV_EN /= none
BUSY# = '0;

ACK# = '0'

Fig. 2-9 Selector State Machine

The FPGA is selected when ADDR[31..29] is equal to the processor ID as defined by the

DSP-ID DIP switches, and when either one of the write signals or one of the read signals are low.

Due to the propagation delay within the FPGA, an extra clock cycle was added to the

SELECTED signal to allow every signal to stabilize before using those signals to decide on the

next state or latch data.

2.3.2 FPGA

On start-up, the FPGA is configured from a Xilinx configuration flash, XC18V04-VQ44C.

There are several configuration modes supported by the flash and the FPGA. The one chosen

was the parallel SelectMap configuration method. In this method, data is loaded into the FPGA

one byte per clock cycle. SelectMap also allows other features for advanced debugging and

configuration that can be used via the JMl and JM2 connectors and the Multilinx programming

cable. Due to time constraints, the JTAG interface of the multilinx connector was used.

W

30

RCLK
—*

D Q:>

>

RCLK/2
 ►

RESET
—>

FPGA
Config
Flash

O
Q

-TDl-
-TCK-
-TMS-

FPGA

JTAG
Connector

TOO

Fig. 2-10 FPGA Configuration Circuit

2.3,3 DAC

There are several different types of DACs, including parallel and serial types. Due to the

timing constraints, as well as the availability of a data bus, the parallel type was chosen. This

also simplifies the control logic.

The digital to analog converter chosen was an AD8582AR. The AD8582AR is packaged in a

28 pin SOIC package, with 50 mil pitch. This DAC has the following features:

• Two channels

• 12-bit resolution using parallel interface

• 0-4.096 Voltage output range

• 2.5 Volt reference voltage

• 16 microsecond settling time

31

cs#
—>
A/B#

—►

LDA

LDB
—*
RST#

MSB
—►

4>-^
^>^

^>-^

<^

PDATA[11..0] 1..01 ^

vcs#
—►

VA/B#
—►—-

VLDA
—►

VLDB

VRST#
—>

VMSB

VPDATA[11..0]

DAC

VOUTA

VOUTB
—>
VREF

AGND
—►

Fig. 2-11 DAC Block Diagram

The DAC is interfaced to the peripheral bus of the controller. The DAC is a 5 Voh device.

To make the peripheral bus compatible for devices that are not 5 Volt tolerant, a LVCMOS buffer

(Texas Instruments SN74LVC16244-ADGGR) was added between the DAC and the actual bus

itself All signals come from the FPGA. Since the DAC is purely an output device, and sends no

control or status signals back to the FPGA, the output enable pins of the LVC16244 buffer could

remain active at all times. The chip v^^ould ignore the signals imtil the appropriate control signals

are sent.

The control for the DAC consisted of both types of data: that which is sent from the DSP, and

lasted the duration of the transaction (referred to here as Transitory Data), and that data which is

latched in the FPGA and remains after the transaction (referred to here as Persistent Data). The

persistent data for the DAC is the RESET command, RST#, and the MSB signal, which decides

during a reset which value the DAC should reset to: 0x000 or 0x800. These two data reside in the

control register block. The actual data that changes the value of the analog channels (transitory

data) is routed using the DAC block.

The DAC block primarily functions as a timing controller for latching the value into the

DAC. The setup and hold times must be valid for the DAC to recognize the new value. The

DAC block uses a state machine that allows it to ensure that the data is working correctly.

32

BLOCK_EN = '0'
or RESET L = '0'

CS = '1'
PDATA = DATA

CNT = 0

cs = •V 1
PDATA = DATA

BLOCK_DONE = '1'

CS=WRL#
PDATA = DATA
CNT = CNT + 1

Fig. 2-12 DAC State Machine

TIME EVENT

ADDRESS FROM DSP DECODED AND BLOCK INPUTS SET UP FOR DIP SWITCH

SELECTOR ENABLES DIPSWITCH BLOCK

DONE GOES LOW, INDICATING BLOCK IS WORKING. DURING THIS TIME, THE BLOCK ENABLES DIP
SWITCH OE AND UPDATES BLOCK_DATA_OUT PORT IN FPGA

DONE GOES HIGH, INDICATING BLOCK IS FINSIHED, AND DATA IS AVAILABLE OR HAS BEEN
PROCESSED

DSP DISABLES BLOCK, AND BLOCK TRISTATES

Fig. 2-13 DAC timing diagram

2.3.4 HEX Display

The hex display is used for debugging and visual indication of status. There are tw^o digits

displayed. During debugging, these digits can be used to represent a system variable, converter

operating state, or setpoint.

33

LATCH
—*
BLANK

—*

PDATA[11..0]

VLATCH
 ►

VBLANK
 ►

VPDATA[7..0]

HEX Display

Fig. 2-14 HEX Dispaly Block Diagram

The Tn.-311 was chosen because it automatically decodes the four bit data into the correct

pattern to represent the corresponding data on the display. No decoding is necessary to

implement in VHDL, allowing the data to be directly passed from the DATA bus to the PDATA

bus.The hex display is interfaced to the controller via the peripheral data bus. It is a five voU

device, and therefore, it exists on the VPDATA bus, which is the five volt extension of the

PDATA bus. There are two control lines that are used. The first one is the blank input. When

this is high, the hex display does not show any digit, and appears blank. The second control line

is the latch input. When this is low, data passes from the VPDATA bus into the hex display.

Typically, the data is set up, and then this line is pulsed low to allow the data to propagate into the

internal latches in the hex display. When it is high, the hex display ignores the values on the

VPDATA bus. '

The hex display is a memory mapped peripheral controlled from the FPGA. When the FPGA

is addressed, and the selector determines that the address is the address of the hex display, it will

set BLOCK_EN to high, and it will then wait for BLOCK_DONE to go low and then high. The

following state machine shown in Fig. 2-15 represents the control for the hex display. Data is

sent on to the PDATA bus, and it becomes stable while the device is in idle. As soon as the

device becomes selected, the state machine moves into the active state. The latch is pulsed low,

allowing the data on the PDATA bus to propagate into the hex display. The hex display will

remain in this state until the counter expires, indicating that the setup and hold time prescribed in

the datasheet has expired. After this, the state machine moves into the done state, setting

BLOCKDONE to high, and setting LATCH back to high, freezing the data. The device returns

to the idle state when the selector deselects the hex display control block

The HEX display is in a DIP-14 package. In order to make it surface mounting, a SMT DIP

socket was used.

34

BLOCK_EN = '0'
or RESET L ='0

LATCH='r
CNT = 0

BLOCK EN = '1'

LATCH = '1'
BLOCK DONE = '1'

LATCH = WRL#
CNT = CNT+1

Fig. 2-15 HEX Display State IVIachine

Pullup
+

dipsw
ckt

placeholder

y DIPSWn
■

PDATA[7..0]

/8 '

DIPSW_EN#

k
'

Fig. 2-16 DIP Switch State {Machine

2.3.5 DIP Switches

DIP switches are useful for setting parameters that can be used as input to control code. The

controller has eight user DIP switches that are general purpose. The DIP switches were

interfaced to the peripheral bus due to a shortage of pins. In order to interface them to the bus, a

tristate buffer was used. When the PDATA bus is tristated from the FPGA side, the buffer can be

enabled to allow the DIP switch data to propagate to the bus. The DIP switch state machine works

similar to the hex display, except that it must latch the data once it is available on the hex display.

The state machine will not enable the tristate buffers if the DSP does not request a read.

35

BLOCK_EN = 'O'
or RESET L = '0'

0E# = '1'
PDATALATCH =

CNT = 0
■r

BLOCK EN = '1'

0E# = RDL#
PDATALATCH = '0'
BLOCK D0NE = '1'

0E# = RDL#
PDATALATCH = '1'

CNT = CNT + 1

Fig. 2-17 DIP Switch State iVIachine

2.3.6 PCI Mezzanine Interface

The PCI Mezzanine Card interface is described in IEEE pi386.1, and is a daughter

specification to the CMC (Common Mezzanine Card) specification, IEEE pi386. The CMC

specification defines the size of a double-wide card to be 149mm x 149mm. The Universal

Controller was chosen to be a double-wide mezzanine card because it was impossible to fit all the

contents of the controller into a single-wide one.

The PMC card plugs into a host carrier card that is specific to the host type that it is plugging

into. For example, in a PC, there are host carrier cards to plug a PMC into the PCI bus. In a

VME system, there is a carrier card chipset that can take a PMC, and convert the resulting signals

in to ones compatible with the VME system. There also exist similar ones for compact PCI and

other architectures. This decision was made so that there was no restriction on the host system

type.

The PCI Mezzanine Card Interface can use up to four connectors per slot, referred to as JPl,

JP2, JP3, and JP4. JP3 and JP4 are used as I/O connectors. In the Universal Controller, these

two are unused. The controller instead uses JPl and JP2, which carry the PCI signals to the host

carrier card.

36

BLOCK_EN = '0'
or RESET L = '0'

STROBE#='0'
SELECT* = '0'

PDATA EN = '1'

STROBE#='1'
SELECT* = '0'

PDATA EN = '1'

LATCH = '1'
BLOCK_DONE = '1

PDATA EN = '1'

wr done

STROBE# = 'r
SELECT* = '1'

PDATA EN = '0'

STROBE#='0'
SELECT* = '0'

PDATALATCH = '0'

allways

rd data

STROBE* = '1'
SELECT* = '0'

PDATALATCH = 'O'

RDY OUT* = '0'

rd data

PDATALATCH = '1'
BLOCK D0NE = '1'

Fig. 2-18 PMC State Machine

2.3.7 DSP Boot Flash

When the controller is powered on or reset, the DSP will use this flash to load instructions

and execute control code. While selecting flashes, it is desirable to have one with the following

properties:

• Boot Sector

• Sector erasable

• Standardized flash interface

37

FPGA

CE#
—»
0E#

WE#
—►

DSP

ADDR

DATA[39..32]

DFLASH

Fig. 2-19 DFLASH - DSP interface.

This flash resides on the DATA bus lines [38..31] as specified by Analog Devices []. There

are three control lines going to this device that are the equivalent of a read enable, a M^rite enable,

and a chip select. The block diagram of the DFLASH - DSP interface is shovi^n in Fig. 2-19.

According to the DSP hardware reference, the DSP addresses the flash via the use of the BMS#

pin. This pin is also used to program the flash. However, it is complicated to use this pin, and

even the code shipped with the demo board for the ADSP-21160 uses a different method. To take

advantage of this already-available code, while still allowing the DSP to boot via BMS#, two

methods of activating this flash are implemented. The flash can be activated by addressing a

memory location in the range assigned to the flash. This is used to erase and program the flash,

as well as to read data from it later in the program. The BMS# pin is asserted by the DSP on

startup, and this method is equivalent to selecting the upper address bits to match the range

assigned in the FPGA memory map. The demo code shipped with the ADSP-21160 flash, called

EZ-KIT [] was modified for the AMD chip. The code was originally written for a ST-Micro

flash, which used slightly different commands for writing and erasing.

2.3.8 Peripheral Flash

It is desirable to store data in a flash for diagnosis purposes. After a fault, the flash would

provide a time history of the states. Other configuration information could be stored here as well.

This flash is similar to the boot flash with the exception that it has no boot sector.

38

REFCLK

o
. in '
X Q

Q:

FPGA

-I
X o >

X o
Q

o
X

CY7C9689A-AC
1

CY7C9689A-AC
2

TX RX TX RX

Fig. 2-20 FPGA and Cypress Communications chips interaction.

2.3.9 Fiber Optic Interface

Each fiber optic transceiver is connected to the FPGA directly. An initial version of PESNet

has been implemented in the FPGA. However, the second version, PESNET 2.2, remains to be

implemented in the future. This protocol supports so far a limited number of nodes.

2.3.10 Peripheral expansion and debug connectors

The peripheral expansion and debugging connectors serve the following functions:

• Debugging VHDL modules

• Interfacing boards that expand the functionality of the controller

• Providing an interface into the system for a logic analyzer

• Bus Monitor

39

Several examples of expansion would be fiber optic transmitters and receivers used to control

peripherals local to the controller, such as crowbars or safety devices. It can also be used to

generate PWM signals to control things such as analog and digital meters. They can also be used

to implement serial busses to support peripherals such as LCDs.

The peripheral expansion and debug connectors are pins directly connected to the FPGA.

These pins can be programmed by writing custom VHDL modules that will control their

behavior. These blocks interface to the control register or they receive commands from the data

and address lines, enabled by the selector.

One example where this was used was in the verification of the analog to digital converter for

the hardware manager. The code was developed and debugged in simulation before the board

was ready. Instead of waiting for the real hardware manager to come back, the analog to digital

converter control block (written in VHDL) was placed in the controller, and interfaced to the

peripheral connectors. It was easy to create an in-house PCB on which the ADC could be placed.

Here, the block was verified. When the hardware manager came in, the ADC operation was

already guaranteed.

2.3.11 Global control connector

A connector was made available to interface a daughter card that supports a higher level

communication protocol for several purposes:

• supervisory control of the converter (controller is a device controlled from a PLC)

• Monitoring of the converter

• Adding distributed periphery to the imiversal controller (controller is busmaster)

This global control connector is interfaced to the peripheral bus, and supports 3.3V and 5V

devices. The 3.3 V devices do not have to be 5V tolerant, as the 5V section of the bus is isolated

using buffers. Several vendors make chips to support upper level communications. Some of

these are listed below.

40

Table 2-1 List of high-level commercial communication chips

Protocol Vendor Chip Description
Profibus-DP Siemens SPC-2 Supports FDL
Profibus-DP HMI ABIC AnyBus-IC single hybrid

chip with digital and analog
components

Profibus-FMS Siemens ASPC-2
Profibus-DP Profichip VPC3+B Slave ASIC
LonWorks Cypress CY7C53150
DeviceNet HMI ABIC AnyBus-IC single hybrid

chip with digital and analog
components

ControlNet
AS-i Bus ZMD A2SI-ST AS-i master
Industrial Ethernet HMI ABIC AnyBus-IC single hybrid

chip with digital and analog
components

The Global Control Connector has all of the peripheral address and data lines available, as

well as the bus control lines, hi addition, there are ten lines private lines that are customizable

depending on the ASIC that is used on the daughter card. Some of these chips use serial

interfaces, in which case two or three of these lines will be used for the interface, and the bus

interface is not used at all. The interface code is written in a VHDL module, and placed into the

FPGA modular architecture, removing the placeholder for the global control interface.

2.4 Methodology

2.4.1 Universal Controller PCB Design

There are many aspects of implementation that are not considered when designing the logical

interconnection of components as in the previous steps. With so many components sharing the

same signals, the layout of the controller needs to be considered carefully. The FPGA has 560

connections to the PCB itself within a 3x3cm area. The DSP has 400. Many of these signals are

switching at 40 or 80 MHz. It is important to consider the distance that these signals have to

travel.

41

Another consideration is EMI shielding. Several components are noisy, and should be

shielded so that the noise does not affect other signals on the PCB. With so many components

switching at different frequencies, bypassing and power planes become important to consider.

Having planes, in turn leads to issues such as copper balance vertically throughout the PCB.

Another constraint to the PCB design is the mechanical layout specified by the CMC standard

(PMC parent specification IEEE 1386). This specification requires the PCB to be 149mm x

149mm with a thickness of 62 mils. There were both good and bad effects of this specification.

The good effect is that the signal lengths were reduced, eliminating problems introduced due to

long trances. The bad effect is the increased density of signals. The higher density of signals led

to blind vias between three layers: Top and Midlayer 1, Top and Midlayer3, and Bottom to

Midlayer 6. This added to the warpage of the PCB, and dramatically increased the cost.

Another important area of the PCB was the optical transmitter. This area had very sensitive

signals switching at 125 Mbps. This area is sensitive to noise, and so several precautions were

taken to ensure its successful operation. First, an exact layout of the transmitter was given by

Agilent Technologies, the manufacturer of the optical transmitter and receivers in application

note 1066. The GERBER files were obtainable for this circuit. Although it was not possible to

directly apply the GERBER files to the circuit, the layout could be copied point by point for every

trace to exactly replicate the layout twice in the controller design. Since the design of this

transmitter/receiver circuit used 4 layers, and the controller used Slayers, the additional layers

were replicated as power planes to increase the noise immunity and add capacitance between the

isolated power plane pair.

The final version of the controller had a total of 709 nets, which were connected to a total of

3280 pads. Additional characteristics of the PCB are Hsted in Table 2-2.

42

Table 2-2 PCB Attributes

Attribulc Value
Number of Layers 8
Number of Holes 1978
Number of Vias 1912
Number of Components 396
Smallest space between
different nets

5 mil

Smallest trace width 5 mil
Mask Type HASL

While the PCB software, Protel 99SE, had autorouting capability, h was sufficient for such a

dense 8-layer PCB. With the help of an external contractor, Gasha Gataric, the first version of the

controller was manually routed.

2.4.1.1 Quality Assurance

During the development cycle, there were several points at which the controller was

examined by people other than the developer. This is important, as there are implicit assumptions

made by the designer that are impossible to recognize by someone who is looking at their own

work. To address this, quality teams were assembled to examine the controller for defects in

design at several stages. The teams consisted of electrical engineering and computer science

B.S., M.S., and Ph.D. candidates. Methods used for quality assurance came fi-om previous work

experience in a software development company, as well as fi-om [McConnell Software Project

Survival], [Lewis, PMDR], and [Schertz and Whitney, Design tools for Engineering Teams],

[Evans and Lindsay, Management and Control of Quality].

QA sessions were held after the completion of the schematics, but prior to the PCB design or

modification. Two major sessions were held. The first one was during the design of the first

board, and the second one was prior to submitting the modifications for the second board to the

PCB manufacturer. Checklists governed the objectives of each QA session. Two teams of two

people were assigned to each area of the reviews to avoid group think behavior while at the same

time double-checking everything. There were several areas to review during each session.

First, the schematic symbols had to be checked. Each schematic symbol was created from the

component datasheet. QA teams checked that each pin of each component matched each name

43

on the schematic symbol. A discrepancy at this point would propagate through the rest of the

design, and would be very hard to fix in the future.

The second type of check was to make sure that the pad size and location of each PCB

footprint matched the specifications on the datasheets. If the footprint was wrong, then the

component would not fit after manufacturing. It is also important to check that Pin 1 was in the

same location, as some packages, especially TQFP and PLCC types vary the location of pin 1

from component to component.

The third type of check was a netlist check. It is easy to misspell a net name, or to use

different notation in different locations when they should be the same. Examples of this are:

+3.3V vs. 3.3V vs 3V3 vs VCC. Similarly, active-low signals have the same problem: BMS,

\BMS, nBMS, BMSn, BMS_L. Other issues that can occur in this area are nets that are the same,

but they are still separated due to some aspect of the PCB software, Protel 99SE.

For the PCB check, several issues were examined: Firstly, the mechanical dimensions were

checked. The CMC specification has several holes for the double-CMC form factor that specify

the x-y location as well as the diameter and clearance for each hole. Secondly, aspects of the

routing were checked for undesirable features, such as multiple vias in a single trace, as well as

traces going past noisy areas of the PCB, such as oscillators and power supplies. Noisy traces

such as clocks had guard traces or planes to shield these components. Other sensitive areas were

the communication transceivers, which transmitted at 125 Mbps, as well as the transceivers and

FPGA. Thirdly, the power planes were checked to ensure that they were connected correctly. In

the second PCB check, the copper balance was also checked. A significant defect in the first

design was the copper imbalance from top to bottom of the PCB. If the copper is not balanced,

the PCB will tend to warp and twist, which in turn makes large surface mount components

difficuh to solder, especially BGA (ball grid array) devices such as the DSP and FPGA. One

PCB failed assembly due to this issue, as the X-RAY revealed bridging between two connections

on the comers of the BGAs. This is discussed more in the issues area.

Many of these QA issues resulted from the initial inspection of the PCB and the resulting

tests. They were added into the second revision, as the issues were recorded in a database, which

in turn created a checklist of issues to explicitly verify in the new design. As issues were found,

they were added to a quality database to make a complete history of the issues found in the PCB,

who found them, when, what category they were related to, and a history of comments associated

with that issue describing what actions were taken to correct it. This database in tum

44

automatically produced a release checklist that was reviewed to ensure that all issues were

accounted for before manufacturing the second design.

During several points in the design and development cycle, the design was presented to

project stakeholders for review and comments. Using their feedback, the design was modified to

include their mput. Outcomes such as the use of PMC resulted from these discussions. In

addition to these changes, one stakeholder (General Dynamics Advanced Information Systems)

conducted another PCB design review, and feedback to each change was discussed ring weekly

teleconferences that lasted from 30 minutes to 90 minutes. The first revision of the PCB turned

out very successful. There were some issues with equipment and software, which took time to

fix, but once these issues were solved, there were not a lot of problems left, as the QA sessions

identified many problems that would have rendered the PCB unusable if they were not identified.

2.4.2 Issue Tracking Database

It is important in complex designs to keep track of problems so that they may be fixed before

the next release. A database was designed that would maintain a list of issues, as well the history

related to that issue. This database facilitated the QA process. The fields considered are shown in

Table 2-3.

45

Table 2-3 Issue Tracking Database

Field Name Description
IssueNumber A unique id that describes the issue
Issue Title A brief description of the issue
Date Opened The date that the issue was found
Date Closed The data that the issue was closed
Assigned To The person who is responsible for resolving the issue
Assigned By The person who submitted the issue
Issue Type Issue:

Assignment:
Issue Status Open: Issue is submitted.

InProgress: Issue is being worked on
Resolved: Issue has been fixed
Closed: Issue has been verified and closed.
Reopened: Issue has been fixed, and verified, but
now it is again a problem, or a canceled issue has
become of interest again
Canceled: Issue will be ignored

Issue Severity Critical: Board cannot be manufactured with this
defect, or it will be unusable
High: Board can be manufactured with this, but the
fimctionality will be severely impaired
Medium: Board can be manufactured with this, but
some features will be disabled
Low: Board can be manufactured, but some features
will not work exactly as designed
Cosmetic: Board functionality will not be affected

Issue Priority High: Issue must be resolved ASAP, because it will
impede fixture work on the controller until it is
addressed.
Medium: Issue may have a complicated fix that
should imply that it should be fixed before it becomes
harder to fix as more work is done.
Low: Issue is not of immediate concern.

Project A description of which project this issue belongs to
Subproject A description of which part of the project this issue

belongs to
Description A more detailed description of the problem or how to

reproduce it
Comments As work is done, this field is updated to keep track of

changes, status, and concerns associated with this
issue. Each entry automatically places the date and
submitter of the comment in the field.

46

Fig. 2-21 Shielding Planes

2.4.3 Revisions and Final Design

After receiving the first design, feedback from the assembly house on the fabrication house,

feedback fi-om General Dynamics, and in-house testing, several modifications were planned for

the second version of the PCB. One of the significant improvements was the power plane

bypassing capacitors. Originally, the capacitors had traces that made a circular path fi-om the

capacitor to the via. In the second design, the vias were moved much closer to the bypassing

capacitor pads, and larger traces were used to connect to these. General Dynamics also suggested

that the bypass capacitors should not be connected to the pins of the device. Instead, the purpose

of the capacitors should be to bypass the plane beneath the device, and other vias should bring

that power up to the component as close as possible. Several changes were made, especially next

to the Cypress transceivers to accommodate these suggestions.

The issue of copper balance significantly affected the PCB. To address this, additional

copper, connected to the ground planes, was added to the perimeter of the PCB in the unused

areas of the midlayers. Additional, larger planes were added to the top and bottom of the PCB,

and were able to add shielding to clock buffers, oscillators, and the communication chips, as

shown in Fig. 2-21. Based on feedback from the assembly house, the finish was changed fi-om

LPI to HASL, as it was easier to mount the BGA components. Other issues identified by the

manufacturer include a lack of solder mask on some the top of some vias. This becomes a

problem with BGA components, as it allows the solder ball on the BGA to migrate into the via

hole, creating an open circuit between the device and the pad.

47

Fig. 2-22 Modifications to U24

2.4.4 Final Design Modifications

After receiving the controller back, most functionality was verified. The fiber optic

components required additional modification in order to ensure that they were functional. Two

cuts are required on U24, and two jumpers need to be created, as illustrated in Fig. 2-22. The two

black lines indicate the jumpers, and the two red lines indicate the cuts. Note that this image is

mirrored when looking at this side of the board. That is, U24 is to the left of U25 when the

communication chips are facing up.

48

3 SOFTWARE ARCHITECTURE

3.1 Introduction
A power electronics control system is a real-time system—it operates using limited resources

and under a set of deadlines. As distributed control architectures become commonplace for

power electronics systems, the size and complexity of the corresponding control software will

increase. As a result, the design and specification of the overall software structure become more

significant issues than the choice of algorithms and data structures used in the computation [i].

Structural issues in software design include the organization of a system as a composition of

components; global control structures; protocols for communication, synchronization, and data

access; allocation of fiinctionality to design elements; composition of design elements; physical

distribution; scaling and performance; and selection among design ahematives. This is the

architectural level of software design.

The traditional procedural or imperative approach to designing embedded control: soflrware

results in a main-program-and-subroutine architecture that has several disadvantages. The control

software is hard to maintain and modify. The software is tightly coupled to the hardware. New

systems typically require significant redesign effort, because the main-program-and-subroutine

architecture does not support software reusability well.

To address these shortcomings, we present a different approach to structuring software

designs. Dataflow is a style of software architecture that strongly supports reusability and

reconfigurability [ii]. In the dataflow style, a control apphcation is implemented as a set of

concurrently executing processes, which we call elementary control objects (ECOs). ECOs

communicate through one-way message queues called data channels. Each ECO is independent,

and knows nothing about the other ECOs in the application—it merely consumes data from some

channels and produces results on other channels. Dataflow computing is reminiscent of signal

filtering and processing, and leads one to design ECOs that are modular and reusable.

Constructing control applications then becomes the process of picking ECOs from a library and

"plugging them together" into the desired pattern.

This chapter will be organized as following. Section 3.2 gives an overall description of

dataflow architecture. Section 3.3 presents dataflow implementation of quite a number of

49

applications. Sections 3.4 and 3.5 present the real-time kernel design in C and C++ respectively.

In section 3.6 the communication protocols of transparent messaging between multiple dataflow

software is described. And finally section 3.7 compares the dataflow approach with a widely

commercially used software development platform.

3.2 Dataflow Architecture

We propose an alternative software architecture for developing control software by

composing reusable modules: dataflow [iii], [iv], [v]. This architectural style has the following

properties:

• It minimizes coupling between software components.

• It encapsulates hardware dependencies.

• It encourages highly reusable components.

• It supports component-level and architecture-level reconfigurability.

• It allows transparent, distributed communication between components, and thus supports

distributed execution naturally.

• It addresses issues of scalability, expandability, and upgradeability.

3.2.1 An Overview of the Dataflow Architectural Style

Software written using a dataflow architecture consists of a collection of independent components

running in parallel that communicate via data channels; such a design can be succinctly depicted

graphically, as shown in Fig. 3-1. In Fig. 3-1, each node is a computational component and each arrow is a

buffered data channel. Each concurrently executing node is a self-contained software part with well-

defined behavior. Data channels provide the sole mechanism by which nodes can interact and

communicate with each other, ensuring minimal coupling and greater reusability. Data channels can also

be implemented transparently between processors to carry messages between components that are

physically distributed. Choosing this component model for embedded control software alleviates many of

the negative aspects of the more traditional main-program-and-subroutine organization. More importantly,

however, it also opens up the possibility of developing a library of commonly recurring, standardized

control software fiinctions encapsulated in reusable dataflow components. Such a design library would

allow a new control application to be configured rapidly from an existing collection of components.

50

^ ode1 Node2

*Nodes

^ode4

7^
Fig. 3-1 Dataflow architecture.

3.2.2 Elementary Control Objects (ECOs)

In this report, dataflow nodes are called elementary control objects (ECOs) to reflect their

role as the building blocks of larger control applications. Each ECO manipulates the input data

that it receives according to its behavior, generating output that can be connected to other ECOs.

There are no explicit calls between ECOs—in fact, an ECO has no knowledge of the other nodes

the system comprises, or of the identities of the other nodes with which it communicates. This

inherent independence allows ECOs to be treated naturally as concurrently executing, active

objects. This natural concurrency, together with the ability to transparently map data channels

across physical component boundaries, provides a direct and simple mechanism for supporting

the distributed control of power electronics systems.

An ECO contains an input and output data channel description, a startup parameter

description, and an implementation, as illustrated in Fig. 3-2. Three distinct types of ECOs exist

within the embedded control domain—computational ECOs, coordination ECOs, and driver

ECOs. A computational ECO embodies some specific computational behavior needed for an

application. Fig. 3-3 shows several examples of computational ECOs. A coordination ECO, on

the other hand, is designed to support transparent management and control of distributed system

hardware assets, as exemplified in Fig. 3-4. Driver ECOs encapsulate hardware dependencies

and provide a standard program interface to control hardware. Fig. 3-5 shows an A/D driver

ECO.

51

-^Implementation

TT
startup Configuration

Parameters

Fig. 3-2 ECO structure.

1-D Digital Fiiter

Xf=f(Xo \)
X, Xf: float

X-

Xref"

1-D Regulator

X,= r(X, X^,)
'K

abc.dqo
x=-
Xb-
Xc-
e-

Xa, Xb, Xc, e , Xd, Xq, Xo: float

Xdqo ~ ' abc_dqo XabcL^. Y

X,

X, X, re, Xr: float

2-D Regulator

Xf = '■{Xi .X2 X,_„, X2_,ef)

-X, ,

X,,X2, Xi_,5, X2_re(, Xi r X2 ,: float

Fig. 3-3 Examples of computational ECO.

ADC

Analog sensed
data

Xinr: ADC value

ADC Driver

Xs = s(X;^Qc)

(integer)

X^: ADC value
(float)

Fig. 3-4 Example of a

coordination ECO.

tt
Pulse

Generator

HM A

Driver

BBn

Pulse
Generator

Driver

PWM
Dispatcher

Modulator

Analog pulse signals for every switch

Align Mode Duty Cycle

Align_Mode: integer Switching action and duty
' n . n . ^ . cycle information of each
Duty_Cycle: float PEBB

K„J (Integer)

d„] (Float)

.? = k Kj V,

d = [rf, a'2 d-i

Fig. 3-5 A/D driver ECO.

3.2.3 Data Channels

Data channels serve as the sole communication paths connecting ECOs into a cohesive

control algorithm. Each data charmel connects a pair of ECOs: the source ECO generates data

and the sink ECO consumes data. Note that data channels are unidirectional—data can only flow

from one source ECO to one sink ECO. Data chaimels carry typed data based on the application

requirements; strong typing helps detect certain kinds of interconnection errors early during

development, rather than later during operational testing. Each data channel has a data queue to

buffer data between ECOs operating at different speeds. The application designer configures

each data channel's data type, buffer size, source connection, and sink connection are when

developing the overall software structure.

52

3.2.4 Dataflow Graph

The dataflow graph describes the control software configuration as a composition of ECOs

interconnected with data channels. Fig. 3-7 shows the dataflow graph of control for a close-loop

3-phase inverter. Annotations on the graph specify ECO startup parameters, ECO priorities, ECO

execution policies, data channel property choices, and data channel buffering pohcies. Designing

a control apphcation involves constructing such a dataflow graph by selecting ECOs from the

design library and connecting them together. Additional user-defined or application-specific

ECOs are also easily supported. ECOs within the dataflow graph can be allocated to different

processors for distributed execution.

3.2.5 Dataflow Architecture Real-time Kernel (DARK)

Unlike applications that are built up from simple subroutines, dataflow applications require

support for their unique features, including support for concurrent execution, data channel

buffering, interprocess synchronization, and interrupt handling. One approach to providing this

infrastructure is to encapsulate it in a small, embeddable, real-time operating system (RTOS).

Such RTOSes are often called "micro-kernels" because, in comparison to full-featured RTOSes,

they are stripped of all but the most minimal features to provide extremely efficient services in a

minunal memory footprint.

3.3 Dataflow applications implementation

We implemented the embedded control software for quite number of apphcations using

dataflow architecture. The open-loop 3-phase inverter is the simplest application, while the 4-leg

inverter is a fairly complicated application.

3.3.1 Open-loop 3-phase Inverter

The DFG for the open-loop 3-phase inverter application is shown in Fig. 3-6. This is the

simplest application that we have used in our experiments. The control algorithm is sinusoidal

PWM (SPWM). It consists of three LookupJSin ECOs that receive a Start signal from their

boolean input data channels. They look up a value from a circular table that they maintain using a

table pointer. After every look-up, the table pointer is incremented. The table source and the

modification step for the table pointer are stored as part of the ECO's configuration information.

The output values of the three ECOs have a phase difference of 120 degrees. These in

combination, form input to the Modulator and fire it to produce three floating-point results that

53

Phase_A
start Lookup_

table

sinQa duty cycle PEBB
driver

Modulator
Start Lookup

table

sinGb Phase_B PEBB
driver duty cycle

1

Start Lookup
table

sinOc PEBB
driver Phase C

duty cycle

Fig. 3-6 Open-loop three-phase inverter.

form inputs to the three PEBBdrivers. The PEBBdrivers convert the data from floating-point

format to a format of control information that can be understood by the power stage, which they

will be inputs to the following two applications are relatively more sophisticated applications than

the open-loop application.

3.3.2 Closed-loop 3-phase Inverter

A switching cycle in the closed-loop 3-phase inverter shown in Fig. 3-7 starts with the firing

of the two Lookup Sin ECOs by external interrupts, and the input of external feedbacks fi-om AID

converters to the AbcDqo ECO.

The outputs of the Lookup_Sin ECOs go to 1-2 duplicators because the same output has to be

duplicated for both the AbcDqo and the Modulator. On receiving both the feedback information

and the outputs from the LookupJSin ECOs, the Abc_Dqo ECO transforms the input abc

coordinates to dqo coordinates. These dqo coordinates form inputs to the 2-d regulator, which

performs PI regulation to get duty cycles in the dqo coordinates. The dqoalbe ECO transforms

the dqo coordinates back to aPy. After this, the 3-d modulator performs modulation on the duty

cycles. The generated duty cycle information forms input to the power stage.

54

ADC /> ADC A
driver

la

abc-dqo
1—>•

ADC E ADC_B
driver

lb
d d dq ddre dq_ref

V ir 'r >'

2-D Regulator

dq Fire > Lool<_up
Sinjable

sinO .jf J
n

Od
 > -^^

-
dqo-aPy

a„

's Fire Lool(_up
Cos_table

cose
•^

3-D IModulator
%

VI V2 VO d1 d2 dO
'r >' y V ' 1 Ha <— PEBB1 driver *-

db
PEBB2 driver PWIM Dispatclier *

dc ^ BEDDO «1.!..M..

Fig. 3-7 Closed-loop three-phase inverter.

S.3.3 Boost Rectifier

Fig. 3-8 shows a dataflow graph for a 3-phase boost rectifier closed loop control. There are

two control loops: current loop and voltage loop. The voltage loop should be executed first to

generate reference for the current loop. For the 3-phase current loop control, the dq

transformation technique is used.

All sensed data are implemented as interrupt-driven data channels, synchronized by the

switching clock. The rising edge of the switching clock causes the execution of the corresponding

interrupt handler, in which all the sensed data, phase currents and voltages and dc voltage are

updated. Those ADC drivers then translate those sensed data to correct values, respectively. At

this point ECO 1-D regulator and synchronize are ready. The dc voltage is regulated in the ECO

1-D regulator, and the current loop reference djref^^ generated. The synchronize ECO tested the

phase voltages and generate a boolean output to indicate whether the phase angles need

synchronizing.

55

ADC DC.
ADC_DC

driver

'dcV

ADC_A

ADC B
 >■

ADCJA
driver

la

ADCJB
driver

lb

1-D
Regulator

^q ref

ADC VA ADC_V
A driver

Fire
Look up
Sinjable

—>•
Synch
ronize

Inx Mod

ADC_VB ADC_V
B driver

—>
Look_up

Cos_table >

sInB

cosO

Fire

-<

-<

abc-dqo

2-D Regulator

dqo-<xPY

PEBB1 driver
da

PEBB2 driver
db

PEBB3 driver
dc

3-D Modulator

Fig. 3-8 Closed loop control for 3-phase boost rectifier.

The two lookupjable ECOs have two different behaviors depending on different inputs

combinations. At normal condition, if the phase voltages do not need synchronizing, the

lookupjable ECOs increment their table pointers and output the table value; otherwise, the table

pointers will be reset. Through ECO duplicator, the sin and cos values are copied and directed to

two different ECOs. So far, the abc_dqo ECO is ready to transform the phase currents in abc

coordinates to dqo coordinates. Then the 2-D regulator performs the current loop regulation with

the reference generated from the voltage loop. The regulated currents in dqo coordinates will then

be transformed back in aPy coordinates through ECO dqo-aPy. Then the ECO 3-D Modulator is

ready to synthesize duty cycle information for each phase. In the PEBBdriver ECO, the duty

cycle information will be translated to generate switch pulses at the phase leg gates.

33.4 Closed-loop 4-leg Inverter

Fig. 3-9 shows the dataflow graph of control for a closed-loop 4-leg inverter. Dq

transformation technology and SVM are still employed in the application. Since this application

contains four phases, so the dq transformations and SVM has one more dimensin than those are

used in the previous applications. And the regulation of output voltages is decoupled into three

independent regulations.

56

start
ADC driver

Start
ADC driver

V.

VK

start
ADC driver

Start
ADC driver

3-D Modulator
v„

start
Lookup_table

sinO

-<

Start
Lookup_table

cose

abc-dqo

Vaf
T

PI
regulator

Al
PI

regulator

I
dqo-abc

PEBB driver

PEBB driver

PEBB driver

PEBB driver

SVM2 4D

region

modulatorSD

Fig. 3-9 Dataflow graph of control for closed-loop 4-leg inverter.

'y^o
PI

regulator

3.4 Dataflow Architecture Real-time Kernel (DARK)

This section provides an insight into the architecture of Dataflow Architecture Real-time

Kernel (DARK). Firstly, the requirements of the dataflow applications imposed on DARK and

specific demands of power electronics control applications is discussed. Then the kernel

infrastructure is presented, followed by a discussion of some prominent kernel features,

higehghtened by a description of the configurable options of DARK. Finally, the DARK design is

assessed experimentally.

3.4.1 Real-time Kernel Design Requirements

As presented in section 3.2, dataflow software is structured significantly different from the

legacy control software, which imposes different requirements on the underlying platform or the

kernel [vi].

57

The main requirements imposed on the underlying kernel by dataflow appUcations are listed

below:

1. High Performance: The components of dataflow are used to replace the equivalent

hardware components in power electronics controllers. In these cases, the execution

speed of the control software becomes an important factor because software is generally

slower than the hardware. So, the kernel for these applications should have minimal

overhead and high execution speed.

2. Faster Context Switching: Dataflow applications tend to have a larger number of

processes or threads than applications developed using other techniques. While a larger

number of independent, reusable, components makes application design easier, it can lead

to an increase in the amount of context switching overhead. The kernel should make an

attempt to reduce this overhead by increasing the speed of context switches as well as

limiting the number of context switches.

3. Efficient Inter-Component Communication: The fact that processes only communicate

via data channels implies that there are frequent (but usually small) interactions between

processes along these channels. Ensuring mutually exclusive access to critical state

within a data channel provides another potential for increased overhead in dataflow

applications. The kernel should provide support for efficient inter-component

communication with minimum overhead.

4. Dataflow Scheduling: Unlike traditional processes that are scheduled based on their

priorities alone, dataflow processes are scheduled on the basis of both the priorities and

data in the incoming data channels. Moreover, the dataflow processes should not be

awakened by every incoming message. The kernel should provide an efficient mechanism

to specify when a dataflow process is ready to execute.

5. Component Execution with Dynamic Priorities: A dataflow process can wake up due to

data in different sets of incoming channels. Depending on the set, it can take specific

actions. The kernel should facilitate this, in addition to adjusting the process priorities

according to the actions they are taking.

3.4.2 DARK Architecture

DARK is implemented in C, with a few key elements in assembly (context switching, dual

register set support, and interrupt handling). Because it is intended for embedded power

58

electronics control, it currently runs on Analog Devices SHARC 21xxx 32-bit digital signal

processors. Dataflow processes, or ECOs, are implemented as C functions. DARK uses a

statically initialized array of ECO descriptors, together with a statically initialized array of data

channel descriptors, to initialize the application at startup.

3.4.2.1 Kernel Components

As discussed in 3.2, dataflow applications are composed of two building blocks: nodes and

data-channels. DARK uses threads to encapsulate dataflow nodes or ECOs, whereas the data-

channels are implemented as circular message buffers or mailboxes.

3.4.2.1.1 Threads

For concurrent execution, ECOs could be implemented as either separate processes or

separate threads. Processes run in separate address spaces and include program code and current

activity, as represented by the value of program counter and the contents of the processor's

registers. A process also contains a runtime stack, containing temporary data (such as subroutine

parameters, return addresses, and temporary variables), and a data section containing global

variables. A thread, on the other hand, is an entity capable of executing concurrently with other

threads and has its own runtime stack. Unlike processes, threads run together in a single address

space. The threads share with peer threads their code section, data section, and operating system

resources such as open files and signals. The extensive sharing makes CPU switching among peer

threads and the creation of threads less expensive, compared with context switches among

heavyweight processes. Although a thread context switch still requires a register set switch, no

memory-management-related work needs to be done. On the negative side, like any parallel

processing environment, muUithreading may introduce concurrency control problems that require

the use of critical sections or locks.

Threads incur less overhead, allow faster interprocess communication, are more memory-

efficient, and support faster context switching. These are the reasons why threads are preferred

over processes in embedded systems, despite their inability to provide memory protection. As a

result, DARK maps each ECO or node in the dataflow graph (DFG) to a separate thread (thread

and ECO are used interchangeably hereafter).

For each thread, the user provides the stack size, priority, ECO function, and firing rule. The

stack size required for a thread depends on the number of local variables used and the nesting of

function calls in the ECO's code. The priority given by the user is the initial priority assigned to

59

the thread when the application starts. The kernel uses the firing rule associated with a thread for

scheduHng. All of the runtime information associated with an ECO is stored in a structure called

Thread Control Block (TCB). There is one TCB associated with each ECO or thread. The TCB

serves as the repository for any information that may vary from thread to thread. The structure of

a TCB in DARK is given in Fig. 3-10.

typedef struct
{

ECO Data p;
ECO eco;
Context tliread env;
Thread State tliread state;
Firing^Rule firing^rule;
Firing_Mask injorts_ready;
int walieup_time;
int deadline;
unsigned int* stacl(_pointer;
unsigned int stacl(size;
bool in OS call;

}TCB;

Fig. 3-10 Thread control block.

All of the information in the TCB is initialized during application startup. The ECO_Data

structure p is the static descriptor used to initialize the ECO. It contains information provided by

the application developer that is used by the ECO during its execution. Each ECO is implemented

as a C function. The eco field points to the function that represents the ECO. The Context

structure is used for saving and restoring the runtime environment of the thread during context

switching. The current thread state is stored in thread_state. The f iring_rule and

in_j)orts_ready fields are used for scheduling, whereas wake_up_time is used for time

management. The variable deadline stores the time by which the ECO should finish execution

to meet the real-time deadlines of the application). There is a separate runtime stack for each

thread. The field stack_j3ointer points to the stack space allocated for the thread. The size of

the stack is given by stack_size. The field in_OS_call is used for synchronization of

threads to prevent shared data problems.

3.4.2.1.2 Data-Channels

DARK maps each arc in the DFG to a typed data channel that is implemented as a circular

byte buffer. Each data channel has a Queue Control Block (QCB) that stores the information

shown in Fig. 3-11.

60

typedef struct
{

int DC_id;
Type_Tag type;
short int elenient_size;
Array_Descriptor array_diraensions;
Overflow_Style overnow_style;
int front;
int rear;
int size in bytes;
volatile int size in elts;
volatile int num entries;
bool blocked;
bool interrupt_driven;
Process* source thread;
Process* sink thread;
char bufferllj;

}QCB;

Fig. 3-11 Queue control block.

Each data channel has an id used for internal management. The type field stores the type of

elements that can be stored in the data channel. This type tag can be used for run-time type

checking through the DARK API in debug builds; alternatively, this feature can be turned off

using preprocessor definitions to eliminate the corresponding overhead. DARK data channels

support all primitive data types along with complex data types like multi-dimensional arrays,

strings, and uninterpreted byte vectors. The field element_size stores the size of one element

in the data channel, whereas array_dimensions stores the array dimensions, if the data

charmel is of array type. The application designer must specify what happens when a data

charmel's source ECO attempts to write new data while the channel is full. The writing ECO may

block until space is available, overwrite the newest element, or overwrite the oldest element. The

overf low_style field determines the action to be taken in such cases. The variables front,

rear, size_in_bytes and size_in_elts are used for queue management. The

num_entries field contains the current number of elements in the queue. The status variable

blocked is true when a thread is blocked while attempting to read from or write to the data

channel. The data channels can have two entities as their source nodes: ECOs and Interrupt

handlers. If the source for a data channel is an interrupt handler, then it is called an interrupt-

driven data channel. The field interrupt_driven is true for such charmels. The variables

source_thread and sink_thread point to the source and sink ECOs respectively.

The QCB block together with the space for the data channel's element buffer is allocated as a

single contiguous chunk of memory. This technique allows the element storage space to be

accessed as an array by using the buff er field. Further, the kernel allocates all QCB blocks and

element storage segments in one large block to reduce dynamic memory management overhead.

61

DARK provides a simple API to the user for interacting with data channels. The user reads

from or writes to a data-channel by calling a function of the form:

<operation>_<type>_DC {). Here the operation is either "read" or "write," and the type is

the type of data to be read or written. Separate functions for each data-type aid in type checking.

Internally, these functions call a single OS operation to read or write raw bytes. Other functions

for obtaining the status of a data channel or flushing all entries are also provided. The API will be

discussed in detail in the next chapter.

3.4.2.2 Kernel Features

This subsection provides an in-depth explanation of the important features of DARK. We

start by discussing the Scheduling approach taken by DARK, designed especially for dataflow

applications. First we describe the different states of the threads. The high speed context

switching provided by DARK is discussed next. Approaches taken for the time management and

interrupt handling are described. Then we explain a simple approach taken by the kernel for

preventing shared data problems. The limited real-time support provided by the kernel to monitor

deadlines is also discussed.

3.4.2.2.1 Scheduling

When more than one thread or process is runnable, the operating system must decide which

one to run first. The part of the operating system concerned with this decision is called the

scheduler, and the algorithm it uses is called the scheduling algorithm.

In dataflow, a node (ECO) is ready for execution when it receives data on (some of) its input

data channels. A general-purpose RTOS will typically schedule processes based on their

priorities, ignoring data channel activities. Some RTOSes also support event-based notification

for individual mailboxes or message queues. When using such kernels for dataflow, however, the

user may be forced to check the status of several incoming channels inside the ECO code to

ensure that all necessary data is available before proceeding. Unhke other RTOSes, DARK uses

both priority and the status of all incoming data channels, together with a set of firing rules that

specify what combination(s) of incoming data the ECO is waiting on. Thus, a thread starts

executing only when all necessary data is ready.

DARK makes scheduling decisions using the firing rules associated with each ECO. Fig. 3-12

illustrates the structure of a firing rule, which is an array of one or more records consisting of a

f iring_mask and a new priority as the fields. The firing mask is a binary mask that

62

specifies the input data channels that, if filled, should trigger the ECO to wake up (change to

ready state). For example, the fning mask 00000111 indicates that the ECO is ready to fire when

it has data on channels 0,1, and 2.

typedef struct
{

unsigned int firing_mask;
short int priority;

} Priority_Flrin^Mask;
typedef Priority_Firing_Masli* Firlng_Rule;

Fig. 3-12 A firing rule.

An ECO can have more than one firing mask associated with it. For example, it can take one

action when it has data in three incoming channels, while it can take another action when it has

data in only two incoming channels. The appHcation designer statically arranges the firing masks

in the firing rule in order of their priorities. The priority field associated with a firing mask is

the new priority that is assigned to the thread if the ECO is triggered as a resuU of the

corresponding firing mask. To support efficient mask testing, the current status of all input

channels is maintained in the form of another bit mask in the in_j)orts_ready field of the

TCB. Every data channel read or write operation updates the corresponding bit of this mask. The

implementation of the scheduler will be discussed in detail in Chapter 5.

3.4.2.2.2 Thread Management

The state of a thread is defined in part by the current activity of that thread. In DARK, a

thread can be in one of the following six states at any time: ready, blocked,

wait_f or_f ire, timed_wait, timed_wait_f or_f ire and dead. Fig. 3-13 illustrates

this state model. When the kernel starts, each thread is in the wait_f or_f ire state because it

is waiting for data. When a thread fires, it goes into the ready state. A thread blocks when it

tries to read from an empty data channel or write to a full data channel. Once an ECO finishes

processing incoming data, it calls the wait_to_f ire {) OS operation to enter the

wait_f or_f ire state until more data comes along. An ECO can also delay execution for a

pre-determined time, which puts the ECO into timed_wait state. The timed_wait_f or_-

f ire state is a combination of wait_f or_f ire and timed_wait. If an ECO is in this state,

it will awaken either when the specified time expires or when its firing rule is triggered. Finally,

an ECO enters the dead state when it finishes execution.

63

Fig. 3-13 Thread state diagram.

Due to the data-driven nature of dataflow processes, most of the thread management is done

through operations carried out with every data channel read and write call. A read operation will

unblock a thread waiting to write, as well as update in_ports_ready. A write operation will

unblock a thread waiting to read, update that thread's in_ports_ready, test the listening

thread's firing rule, and make the thread ready if it is triggered. Because of this relationship,

DARK calls the scheduler after each read and write operation. If a thread is fired after these

operations, it is placed in the ready queue according to its priority. The scheduler is also called as

part of other OS functions, including wait_f or_f ire (), timed_wait (), and timed_-

wait_f or_f ire (), so that the system can switch to an alternate ready thread if necessary.

3.4.2.2.3 High Speed Context Switching

The scheduler for an operating system can run as a separate thread, or can be called by other

threads passively. DARK uses the former approach and has an active scheduler because an active

scheduler aids in preemptive scheduling. Like most RTOSes, DARK saves and restores only

selected registers during a context switch. The registers that are not used by the C run-time

environment are not saved, so use of assembly language in ECO code requires special care. Most

context switches in a dataflow application occur between the scheduler and executing threads.

Minimizing the cost of such switches will increase performance. DARK supports the use of a

dual-register-set architecture to support high-speed context switching between the scheduler and

application threads, reducing the switching time by 80%.

Many digital signal processors used in embedded control have two register sets for increased

performance. For example, the Analog Devices SHARC 21062 microprocessor on which DARK

was originally implemented has a primary set and an alternate set of registers. DARK uses the

64

primary register set for the kernel while the secondary set is used for executing application

threads. Switching between the scheduler and the application involves simply flipping one bit in a

control register and saving/restoring some key status registers. This approach leads to a drastic

decrease in the context switching time between the DARK scheduler and application threads, as

seen in Fig. 3-14.

g 300

DARK:
OS/ECO

DARK:
ECO/ECO

VDK++ MicroC/OS-

Context Switch

Fig. 3-14 Comparison of context switching times.

DARK'S scheduler-to-application context switch is five times faster than the context switch

that occurs between application threads. Figure 3.5 also shows the context switching times taken

by two other commercial RTOSes (on the same processor).

3.4.2.2.4 Time Management

DARK allows an ECO to request a timed delay. In other RTOSes, the kernel typically checks

each waiting thread at every clock tick, and adds it to the ready queue when the waiting period

has expired. This technique can introduce unnecessary cost if there are more than a tiny number

of waiting threads.

DARK uses a different approach to handle timed delays. When the timed_wait {) or

timed_wait_f or_f ire () function is called, the delay is converted into an absolute time by

adding the current system time to it. Then, it is stored in the TCB. Next, the thread is then added

to a (circular) waiting queue arranged in ascending order by absolute time. When a thread is

added to the waiting queue, a kernel variable act ions jending is set to indicate that the

scheduler should check the waiting queue. Each time the DARK scheduler is called, it compares

the system time with the thread wakeup time of the first thread in the waiting queue. The thread is

added to the ready queue if the waiting time has expired. The scheduler need only check the first

thread in the waiting queue unless that thread's wait is over.

65

3.4.2.2.5 Interrupt Handling

Many portable RTOSes rely on a compiler-provided mechanism for interrupt handling where

C functions can be used as interrupt routines. In this general approach, all registers are saved and

restored while handling interrupts, increasing the overhead of intemipt-oriented context

switching. The compiler provided by Analog Devices for its SHARC DSPs supports this

approach, but also provides a second option of using the alternate register set for interrupt

handUng. Since the C runtime uses only the primary register set, this option works well for most

RTOSes, allowing speedy interrupt handling. DARK cannot use this option, however, because it

uses both the alternate and primary register sets on this platform.

DARK uses an alternative approach for handling external interrupts that provides

performance comparable to this second option. Rather than placing actions directly in the

interrupt handler itself, DARK uses a small-footprint handler that simply logs incoming events

into an "event queue", which is managed by the DARK scheduler thread. The interrupt handler

runs in the currently active register set and only needs to save and restore a couple of registers. It

logs a 32-bit code representing the interrupt that was received into a circular buffer of incoming

events, then returns control to the dispatcher. This queue of events is translated into messages

sent on data channels to the apphcation inside the dispatcher when it checks for actions_-

pending. After that the dispatcher selects the highest priority thread to run.

In addition to the general-purpose interrupts explained above, DARK also supports clock

interrupts and non-maskable interrupts (NMI). The clock interrupt ISR is written in assembly and

simply increments the kernel variable current_time that is used for time management. Only a

few registers required for incrementing a variable are saved and restored in this ISR. The NMI

interrupt is used for emergency condition notification and requires a time critical response. In

most cases, it results in a call to the application's emergency shutdown procedure, bypassing all

other DARK and application code.

3.4.2.2.6 Mutual Exclusion

The most common approach to supporting inter-process synchronization in an RTOS is to

provide semaphores. Other mechanisms that are often supported include event notification

mechanisms and message queues. Though semaphores are powerful and are provided by most

RTOSes, they can lead to a heavy cost in terms of performance. Another approach for mutual

exclusion adopted by RTOSes is to disable interrupts when entering a critical section and re-

66

enable them on exiting the section. This option is unsuitable for large critical sections because of

the increasing probability of missing important interrupts.

Fortunately, the unique aspects of dataflow processes ensure that most mutual exclusion

problems do not arise in DARK. Threads share no resources or memory and communicate only

through the data channels. The only conflicts that can arise are when two ECOs attempt to access

the same data channel, or when an ECO and the scheduler thread both attempt to access an

internal OS data structure. In effect, this means that all potential conflicts occur only when a

thread is making an OS API call. The in_OS_call field of the thread's TCB is used as a

simple flag to indicate when an application thread is in the process of making such a call. This

field is only written by the ECO and only read by the scheduler thread. Since the scheduler is

always called at the conclusion of each OS operation, if it is ready to perform a context switch on

a running thread where in_OS_call is set, it can simply resume the thread—which will then

finish the call, and promptly return control to the scheduler so it can be switched out. This forms

a crude form of "safe points" for context switching. Otherwise, no mutual exclusion mechanisms

are needed to manage dataflow applications. Note that interrupt handling can happen at any time,

since there can be no conflicts between the interrupt handlers and application code.

3.4.2.2.7 Real-time Support

DARK provides options to users to selectively include real-time features in the kernel. The

optimal fixed priority algorithm is shown to be the rate monotonic priority assignment (RMA) in

which a task with a shorter period is given higher priority than a task with a longer period [vii].

The deadline driven scheduling algorithm is an optimal dynamic scheduling algorithm [vii]. But

the dynamic real-time scheduling algorithms carry a lot of overhead, which may affect the system

performance in a negative way. In case of deadline driven scheduhng algorithm, the deadlines are

monitored at each clock tick to assign the highest priority to the task with nearest deadline.

DARK provides support for using the fixed priority real-time scheduling algorithms. Along

with the DFG definition, the user is given option to specify a statically scheduling algorithm

through a fiinction handle. If the function handle is assigned null, the default scheduling provided

by DARK is used. DARK provides an implementation of the fixed priority RMA that can be

optionally used by the application designer to assign priorities according to the rate monotonic

approach. RMA uses the information in the DFG to calculate the priorities and exits without

starting the application if a feasible schedule cannot be found.

67

In addition to this, DARK provides a simple API to applications for monitoring their real-

time deadlines. In the interest of DARK's high-performance objective, the complex real-time

support necessary for POSK compliance has been avoided. Moreover, other POSK-required

features are omitted, including naming, file systems and signals. An entity can set a deadline for

its execution using the following API function:

void set_deadline(int time);

The variable time in this function specifies the time by Vi^hich the entity has to finish its

execution. Whenever this function is called, the time is converted to an absolute time by adding

the current system time to it. The ECO is then added to a deadline queue similar to the waiting

queue. Later, the ECO calls check_deadline () to ascertain its adherence to the deadline.

This function removes the associated entry from the deadline queue and returns true if the ECO

met its deadline. In addition to this, the DARK scheduler also checks the first entry of the

deadhne queue on each invocation. If it finds an entity that missed its deadline, it calls a user-

provided handler.

The kernel also provides an option in OS_cf g. h to monitor the switching cycle deadlines,

which are important for dataflow applications. One switching cycle consists of sensing and

updating all of the necessary components in the power stage being controlled. When this option is

enabled, the set_deadline is called at the beginning of each switching cycle, whereas

check_deadline is invoked at the end of each switching cycle. If a switching cycle exceeds

its deadline, a user provided handler is called that may cause an emergency shutdown.

3.4.2.3 DARK-Configurable Options

Four distinct versions of the DARK kernel can be obtained by selectively removing certain

kernel features. Removal of the features leads to an increase in performance together with a

concomitant reduction in run-time flexibihty. The application designer can select the most

appropriate DARK version for a given application's requirements. Table 3-1 lists the features in

different versions. In addition to this, the data-channels can also be configured according to the

needs of the applications.

The "full-featured" version of DARK, with nothing disabled, is a multi-threaded preemptive

kernel. Threads are dynamically scheduled based on their firing rules and priorities. After every

read and write operation, the scheduler is invoked to check for higher priority threads. A context

switch takes place if a higher priority thread is ready. The kernel also ensures fair scheduling

68

between equal-priority threads. Please note that the fair scheduling here does not mean fair CPU-

time slicing. It means that the DARK scheduler selects the next thread of equal priority and

suspends the current thread whenever it is invoked.

The "non-preemptive" version of DARK does not invoke the scheduler on every OS call.

Instead, each thread runs until it suspends itself—typically because it is waiting for more

incoming data. Thus, the overhead of calling the scheduler after every read and write operation is

avoided by sacrificing immediate response to higher-priority threads.

The remaining two versions of DARK are single threaded. They avoid the time spent in

context switching, thereby giving a performance boost to the application. Such an approach may

be imsuitable for an application with dynamic behavior, but may be ideal for monotonic

applications that execute sequentially. The dynamically scheduled, single-threaded version of

DARK continues to use firing rules and priorities to select which process is ready for execution.

The statically scheduled, single-threaded version of DARK is fastest; it uses a precomputed firing

order for threads, eliminating all use of priorities and firing rules.

DARK also provides a configurable option for data-channels. The data-channels in a dataflow

application can be synchronous or asynchronous. Synchronous channels never conta.in more than

one data item throughout the application execution. In other words, whenever a data item is

written, the sink ECO consumes it before any subsequent write into the channel. Asynchronous

data channels can contain multiple data items. Many dataflow applications use synchronous

channels. The kernel provides a mailbox option, which can be used with any of the four DARK

versions listed above with no change to the application code. The mailboxes avoid the costly

queue maintenance operations and thus, provide a better performance.

In addition to these options, DARK also provides options for adding real-time features as

discussed in the previous section. The user can select a fixed priority real-time scheduling

algorithm such as RMA using a handler in the DFG. h file. The option of monitoring deadlines

for each switching cycle can also be selected by the application designer.

Table 3-1 Configuration options available in DARK.

Versions
Features |

Preemptive Multithreade
d

Dynamic
scheduling

Full-featured DARK X X X
Non-preemptive DARK X X
Dynamically-scheduled single-threaded DARK X
Statically-scheduled single-threaded DARK

69

3.4.3 Kernel Evaluation

In this subsection, we discuss the results obtained during the performance evaluation

experiments of DARK. The experiments were conducted using an Analog Devices-SHARC

21160 80 MHz microprocessor. The Analog Devices VisualDSP++ 2.0 emulator was used to run

the experiments and collect the data.

As described before, DARK can be used in any of the four modes using the configurable

options. The experiments in this chapter exhibit the relative decrease in the kernel overhead

through reducing the kernel features. The results show that the user can reduce the kernel

overhead by more than 80% by the removal of features.

We have compared the performance of DARK with two kemels-MicroC/OS-H [viii] and

Analog Devices VDK++ [ix]. MicroC/OS-II is a simple high-performance kernel written in C,

which imposes certain limitations on the applications to increase the speed. VDK++ is a special

kernel designed by Analog Devices to support their microprocessors. VDK-H- is written in C++

and it was not found suitable for running high-performance applications after our experiments.

The resuhs of the performance comparison indicate that the DARK with all features enabled is

more than 80% faster than Analog Devices' VDK++. The non-preemptive version of DARK is

found to be more than 11% faster than the non-preemptive MicroC/OS-II. The main features of

the kernels are compared with DARK in Table 3-2.

Table 3-2 Comparison of major properties of the kernels

Properties Kernels j
Full-featured DARK MicroC/OS-II VDK++

Implementation Language C C C++
Preemptive Yes Yes Yes
Multitasking Yes Yes Yes
Upper limit on number of user tasks None 56 None
Inter-task communication support Yes Yes No
Call to scheduler After API call After API call After API call
Mutual exclusion for interrupt handlers NOT required Required Required
GUI for task initialization None None Yes
Reconfigurability Yes None Limited

3.4.3.1 Overview of Applications

The dataflow applications for power electronics controllers discussed in the previous chapter

are used in conducting the performance evaluation experiments. All the three applications are

developed as a part of PEBB project at Center for Power Electronics Systems, Virginia Tech.

This Section contains an overview of the relative load that the applications impose on the kemel.

70

The Table 3-3 summarizes the key categories of Kernel API calls made by the three test

applications. The numbers shown represent how many times each type of operation is performed

in one switching cycle of the application. One switching cycle consists of sensing and updating

all of the necessary components in the power stage being controlled. For the test applications

discussed here, that amounts to executing each ECO in the application exactly once.

Table 3-3 Kernel operations per switching cycle.

Operations Open loop inverter Closed loop inverter Boost rectifier

Read from data channel 9 20 29

Write to data channel 9 20 29
App-App context switches 6 8 17
App-kemel context switches 14 18 36

Ready queue insertions 7 9 18
Ready queue deletions 7 9 18
The dataflow graphs for these applications are given in 3.3. The dataflow application for open

loop inverter is the simplest containing only seven ECOs and nine data channels. The closed loop

inverter consists of nine ECOs and twenty data channels. This application contains one current

loop, which is completed by the hardware sensors that take the output results from the PEBB

drivers and control the application via interrupt driven data channels. The boost rectifier

application contains two loops—current loop and voUage loop, which again are controlled by the

external hardware sensors. These loops are called feedback loops as they give a feedback to the

applications based on their pervious outputs. The dataflow application for the boost rectifier

contains eighteen ECOs and twenty-nine data channels.

3.4.3.2 DARK Versions

DARK provides options for selectively removing the features for gaining performance. In this

section, we will compare the relative performance gains as features are removed. Experiments

were conducted on all of the eight DARK options possible—Preemptive (Full-featured) DARK,

Non-preemptive DARK, Dynamically scheduled single threaded DARK and Statically scheduled

single threaded DARK, with or without the mailbox option. The mailbox option, which is suitable

for synchronous communication, provides the best performance.

Table 3-4 shows the performance comparison figures obtained when message queues are

used whereas the figures for the mailboxes are provided in Table 3-5. As shown, the fiiU-featured

version of DARK takes 4203 instruction cycles to complete one switching cycle of the

application, whereas the minimal featured version with mailboxes takes only 514 instruction

71

cycles. A significant performance gain is achieved by removing the multi-threaded feature, as the

overhead for context switching diminishes drastically. In addition, static scheduling also leads to

performance gain, because the ready queue and firing rule related operations are completely

eliminated. The mailbox option eradicates the queue maintenance operations, because of which it

is faster than the versions with message queues. The Fig. 3-15 shows a graphical representation of

the reduction in kernel overhead, both in message queues and mailboxes versions.

Table 3-6 and Table 3-7, and Fig. 3-16 show the similar comparison resuhs for the closed

loop application. The fiiU-featured DARK takes 6603 instruction cycles for completing one

switching cycle of the application while the minimal featured version takes 1073 instruction

cycles.

At the end, we have provided the results obtained when the boost rectifier appUcation was

used to run the experiments. The data in the Table 3-8 and Table 3-9 show that the fiall-featured

DARK takes 12371 instruction cycles for executing one switching cycle of the application

whereas the minimal-featured version takes only 1561 instruction cycles. The reduction in kernel

overhead by removing features is shown in Fig. 3-17.

Table 3-4 Performance of DARK versions for the open loop application with message

queues

Operations
Execution time for one switching cycle (Instruction cycles) |

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 235 235 235 235

Scheduling 529 529 219 212

Context switching 1148 1148 0 0

Ready queue operations 525 525 525 0

Data channel operations 1304 999 945 312

Other OS operations 462 460 77 0

TOTAL 4203 3896 2001 759

Table 3-5 Performance of DARK versions for the open loop application with mailboxes

Operations
Execution time for one switching cycle (Instruction cycles) |

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 235 235 235 235

Scheduling 529 529 219 212

Context switching 1148 1148 0 0

Ready queue operations 525 525 525 0

Data channel operations 1040 734 734 67

Other OS operations 462 450 121 0

TOTAL 3939 3621 1834 514

72

4500
S 4000

■g 3500
^ 3000
c 2500
.2 2000
I 1500
b 1000
g 500

0

1 Other OS operations
J HMI

K P F ■ B Data channel operations

1 1 1 ■ Ready queue operations

1 1 1 BB
■ Context switching

1 1 1 1 ■ ■ ■ ■ Dispatcher

1 ECO execution
™ 5 CO a>

<D

«! 5 <n 0)
en 3

1
(0
2

Ol CD
™ ? <n CD

1 O

X o

to
IS

<u

0) (B
(0 3

Full Featured Non-py-eenrptive Sngle-threaded angle-threaded

DfliRK Dyn. Scheduled Stat. Scheduled

1 1 l/ersion

Fig. 3-15 Performance of DARK versions for the Open-loop Inverter application.

Table 3-6 Performance of DARK versions for the closed loop application with message

queues

Operations
Execution time for one switching cycle (Instruction cycles)

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 583 583 583 583

Scheduling 679 679 297 270

Context switching 1476 1476 0 0

Ready queue operations 612 612 612 0

Data channel operations 2659 2059 2059 731

Other OS operations 594 594 203 0

TOTAL 6603 6003 3754 1584

Table 3-7 Performance of DARK versions for the closed loop application with

mailboxes

Operations
Execution time for one switching cycle (Instruction cycles) |

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 583 583 583 583

Scheduling 679 679 297 270

Context switching 1476 1476 0 0

Ready queue operations 612 612 612 0

Data channel operations 2271 1698 1698 220

Other OS operations 594 594 181 0

TOTAL 6215 5642 3371 1073

73

Non-
Preemptive

Version

M
0)

in o
(0 D

o

Single-
threaded

(0 0)

« O

Single-
threaded

X o
£1

n other OS operations

E3 Data channel operations

■ Ready queue operations

■ Context switching

■ Dispatcher

■ ECO execution

Fig. 3-16 Performance of DARK versions for the Closed-loop Inverter application

Table 3-8 Performance of DARK versions for the boost rectifier application with

message queues

Operations
Execution time for one switching cycle (Instruction cycles)

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 778 778 778 778

Scheduling 1354 1354 585 567

Context switching 2952 2952 0 0

Ready queue operations 1811 1811 1811 0

Data channel operations 4252 3174 3174 1020

Other OS operations 1224 1224 205 0

Table 3-9 Performance of DARK versions for the boost rectifier application with

mailboxes

Operations
Execution time for one switching cycle (Instruction cycles)

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 778 778 778 778

Scheduling 1354 1354 585 567

Context switching 2952 2952 0 0

Ready queue operations 1811 1811 1811 0

Data channel operations 3699 2640 2640 216

other OS operations 1224 1224 88 0

TOTAL 11818 10759 5902 1561

74

lA «
U >. o
c
o

14000

12000

10000

8000
6000

4000

2000

0

B Other OS operations

H Data channel operations n ■ H nn
1

1

^ K2
■ Ready queue operations

■ I i I n n ■ Context switching ■ III. - ■ Dispatcher

■ ■ ■ ■ M ■■ ■ ECO execution

(0 3
(0 0
CO 3
» o

<0 3
to V

o
(0 3
<0 ID
<0 3 1 o

1
ra
IS

1
(0

Full Featured Non- Single- Single-

FVeenptive threaded Dyn. threaded Stat.

Version

Fig. 3-17 Performance of DARK versions for the Boost Rectifier application

3.4.3.3 DARK vs. MicroC/OS-II

In this section we present the results obtained by the performance comparison of Full-

featured DARK with Non-preemptive MicroC/OS-II [viii]. MicroC/OS-II is a preemptive multi-

tasking kernel written by Jean J. Labrosse in C. It schedules tasks based on their priorities and

does not provide any special support for dataflow applications. MicroC/OS-II provides API for

inter-task communication using message queues. For experimentation purposes, the support for

firing rules was added for dynamic scheduling of dataflow applications. Semaphores were used to

avoid race conditions related to message queues, which are shared data structures.

MicroC/OS-n makes many simplifying decisions in order to provide high-performance. The

number of user tasks or threads is limited to 56 and every task should have different priority. This

enables the kernel to completely eliminate the costly ready queue operations. MicroC/OS-II uses

bit tables for faster scheduling of tasks. On the negative side, it makes the fair scheduling of tasks

impossible, as same priorities cannot be assigned to multiple tasks. The limit on number of tasks

is also a concerning factor for dataflow applications because they often have more tasks than

regular applications for increasing the reusability and modularity. In DARK, the number of

threads is limited by the system memory and multiple threads can have the same priority, which

enables fair scheduling.

75

Table 3-10 Performance of DARK versions for the boost rectifier application with

message queues

Operations
Execution time for one switching cycle (Instruction cycles) |

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 778 778 778 778

Scheduling 1354 1354 585 567

Context switching 2952 2952 0 0

Ready queue operations 1811 1811 1811 0

Data channel operations 4252 3174 3174 1020

Other OS operations 1224 1224 205 0

TOTAL 12371 11293 6553 2365

Table 3-11 Performance of DARK versions for the boost rectifier application with

mailboxes

Operations
Execution time for one switching cycle (Instruction cycles) |

Full-featured Non-preemptive
Single-threaded

dynamically scheduled
Single-threaded

statically scheduled

ECO execution 778 778 778 778

Scheduling 1354 1354 585 567

Context switching 2952 2952 0 0

Ready queue operations 1811 1811 1811 0

Data channel operations 3699 2640 2640 216

Other OS operations 1224 1224 88 0-

TOTAL
11818 10759 5902 1561

16000

14000 ■ Other OS operations

■ Data channel operations

■ Ready queue operations

■ Context sw Itching

B Scheduling

n HX) execution

Fig. 3-18 Performance comparison between Full-featured DARK with message

queues and MicroC/OS-ll.

Unlike DARK, MicroC/OS-II does not have typed data channels. The data channels of

MicroC/OS-II support only void pointers, thus reducing the type safety. This also increases the

76

possibility of memory leaks and dangling pointers. Moreover, MicroC/OS-II does not provide any

special scheduling for dataflow applications based on the data in their incoming data channels.

This increases the burden on the application designers who in turn are forced to use an invariant

of static scheduling for their applications.

At last, the preemptive scheduling approach adopted in MicroC/OS-II is an unnecessary

overhead for dataflow applications. In a dataflow apphcation, a thread becomes ready only after

some specific API functions such as read or write to data-channel or after interrupts. So, it is not

necessary to check for higher-priority threads at each clock tick as is done in MicroC/OS-II.

Instead this process should occur only after possible operations that can make a dataflow thread

ready, which is the approach adopted in DARK. So, the preemptive scheduling approach adopted

in DARK is more effective and has lesser overhead than MicroC/OS-II, as it is designed specially

for dataflow apphcations.

The Table 3-12 and Fig. 3-18 show the results obtained in the performance comparison of

Non-preemptive DARK with message queues and Non-preemptive MicroC/OS-II.

Table 3-12 Performance comparison between Full-featured DARK with message

queues and MicroC/OS-II

Operations

Open loop Closed loop Boost Rectifier

Non-
Preemptive

DARK
MicroC/OS-

II

Non-
Preemptive

DARK
MicroC/OS-

II

Non-
Preemptive

DARK
MicroC/OS-

II

ECO execution 235 235 583 583 778 778

Scheduling 529 882 679 1013 1354 2467

Context switching 1148 1575 1476 2098 2952 4253

Ready queue operations 525 0 612 ' 0 1811 0

Data channel operations 999 1684 2059 3674 3174 5958

Other OS operations 460 0 594 0 1224 0

TOTAL 3896 4376 6003 7368 11293 13456

3.4.3.4 DARK vs. Analog Devices-VDK-H-

VDK++ [ix] is a preemptive multi-tasking kernel written in C++. It is provided by Analog

Devices as a component of its VisualDSP++ IDE for developing apphcations for its DSPs.

VDK++ provides users the options of selecting the scheduling policy. It supports cooperative

scheduling and round robin scheduhng in addition to preemptive scheduling. The associated

overhead because of object-oriented features makes VDK++ unsuitable for high-performance

applications.

77

The scheduling adopted in VDK++ is similar to DARK. The scheduler is called after an API

call to the kernel, which can make a higher priority thread ready. VDK++ does not provide any

support for inter-task communication, which is an integral part of any kernel. For performing the

experiments, we added data channel support to VDK++ similar to DARK. While accessing the

data-channels, we had to use semaphores in VDK-H- to avoid shared data problems. For dynamic

scheduling of the dataflow applications, the event signal API provided by the VDK++ kernel was

used in read and write operations.

VDK-H- provides a user interface for the programmers through which the properties of the

kernel can be changed. The user interface is also used to add or remove events, semaphores,

threads, etc. This makes the kernel easy to use but on the hand, also increases the inflexibihty of

the kernel. It is a drawback for the dataflow applications, which rely heavily on reusability of

individual ECOs because the firing rules of existing ECOs cannot be used in a new application.

The user needs to create a separate set of events for each project or application. Also, as the

kernel files are generated automatically by the kernel for every project, modifying VDK-l-l- to

make it suitable for dataflow applications is very difficult and expensive. Moreover, the kernel

operations in VDK+-I- are very heavyweight and are unsuitable for applications that require high-

performance. We conclude that VDK-f-)- is suitable for those applications that have independent

threads and where the speed of execution or the kernel overhead is not a big constraint. Table

3-13 and Fig. 3-19 show the results obtained in the comparison of FuU-feamred DARK with

VDK-I-I-. As seen in the figures, the use of expensive VDK-l-l-- semaphore and event operations in

data channel reads and writes increases the cost by a tremendous amount of instruction cycles.

Table 3-13 Performance comparison between Full-featured DARK with message

queues and Analog Devices- VDK++

Operations
Op(;n loop Closed loop Boost Rectifier |

Full-
featured
DARK VDK++

Full-
featured
DARK VDK-H-

Full-
featured
DARK VDK-H-

ECO execution 235 235 583 583 778 778

Scheduling 529 2243 679 3046 1354 5564

Context switching 1148 1659 1476 2312 2952 4278

Ready queue operations 525 0 612 0 1811 0

Data channel operations 1304 14850 2659 33000 4252 47850

Other OS operations 462 2551 594 4093 1224 7461

rOTAL 4203 21538 6603 43034 12371 65931

78

fUUUU

60000

1 50000
o
0 40000

g
1 30000

1
g 20000

.1 1
■

U Other OS operations

■ Data channel operations

B Ready queue operations

■ Context switching

El Scheduling

la ECO execution
10000

DARK

Oper

VDK++

loop

DARK VDK++

Qosed loop

DARK VDK++

Boost Rectifier

Fig. 3-19 Performance comparison between Full-featured DARK with message

queues and Analog Devices-VDK++

3.4.3.5 Summary of Results

In this section, we have summarized the results obtained in all the experiments. The Fig.

3-20, Fig. 3-21, and Fig. 3-22 present the summaries for Open-loop, Closed-loop and Boost

Rectifier applications, respectively. As shown in the figures, the configurable options of DARK

present opportunities to application designers for selecting a tailored version that meets the

performance requirements. The figures use the same legend as used in previous figures.

79

Open Loop Inverter

Single-threaded
Stat. Sch

Single-threaded
Dyn. Sch

DARK
RTOS

Fig. 3-20 Summary for results obtained wliile using Open-loop Inverter application.

Closed Loop Inverter

«xxx> 1
35000 1
30000 1
25000 I
20000 I
15000 I
10O0O I
5000

mmm MHI B B S S . ill '

Mailbox Message

Queue

Mailbox Message

Queue

Mailbox Message

Queue

Maflbox Message

Queue

Single-threaded Stat.

Sch

Single-threaded Dyn.

Sch

Non-Preemptive Preemptive

DA RK MCOS-ri V DK++

Fig. 3-21 Summary for results obtained while using Closed-loop inverter application

80

Boost Rectifier

RTOS

Fig. 3-22 Summary for results obtained wliile using Boost Rectifier application

3.5 DARK++

It is worth discussing the advantages that object-oriented programming offers that warrant its

use. We discuss below, some important points in this regard:

• Compiler-enforced encapsulation in C++ offers more protection due to the notion of

classes and different access levels for the various data members and behaviors - this

applies to all OO systems in general, and therefore to our system as well.

• C++ offers more type safety with more static type checking - this is true of components

that can be implemented by inheritance from a generic base class with parameterized sub-

classes for different data types, as opposed to having a generic module that is used for all

data types with appropriate typecasting as is done in non-00 implementations generally.

Typecasting makes the system more error-prone.

• OO systems are more naturally extendible by inheritance and overriding of base class

methods in subclasses.

81

In our system, we found that with respect to the classically cited advantages of OO

programming, viz., modularity, reusability and maintainability, our system is comparable to the

non-00 system and does not offer any special gains because the non-00 system also has a well-

defined structure with a standardized and reusable library of components.

3.5.1 DARK++ design overview

The DARK-H- kernel has been designed and implemented as a platform to run PEBB

systems, which are based on dataflow. The overall goal of PEBB-oriented research is to achieve

modularization, standardization and reusability of power electronics components. The goal of

DARK++ is to support this same modularity, standardization and reusability within the control

software. Since the 00 paradigm offers the advantages of software modularity and reusability, it

is a natural fit with PEBB research. The DARK++ system comprises a library of ECOs that can

be modified or extended very easily by using the classes and templates provided.

Due to the advantages of using 00 programming for supporting PEBB systems, it is worth

exploring its feasibility. Since we are dealing with real-time embedded systems, efficiency is a

very important concern. We need to consider both the efficiency requirements in the given

scenario, and also the efficiency issues that we need to overcome due to the use of OO

programming.

Dataflow applications are comprised of processes that are essentially data driven. This

necessitates causal ordering of the processes, which is done by the scheduler. However, for a real-

time system, processes also have to be temporally ordered since every process has to meet its

real-time deadline. In such a scenario, the overhead that the OS causes plays a crucial role.

Moreover, dataflow applications typically comprise a larger number of smaller processes as a

result of striving for modular, independent and reusable components. The natural consequence of

a large number of processes is:

• high overhead in scheduling and context switching

• high frequency of inter-component communication

Over and above these efficiency issues, the 00 paradigm introduces additional performance

issues. The main sources for concern over extra run-time overhead are:

• Heap-allocated memory, due to the extensive dynamic creation of objects

• Dynamic binding, due to the use of virtual methods

82

• Method call overhead, due to a large number of small methods in classes

5.5.2 Kernel Architecture

This chapter describes the design of DARK-H-. It provides insight into the features an

application designer needs to understand in order to write ECOs and use DARK++ for an

application. It also discusses the rationale behind the most critical design decisions. This chapter

presents the most important classes in the DARK++ system, including their responsibihties,

interactions and the interfaces they provide. The following section is a discussion of the features

of dataflow applications and the requirements that the dataflow model imposes on the kernel.

3.5.2.1 DARK++

DARK++ is a high-performance object-oriented kemel that addresses the requirements

imposed by dataflow. It aims to reduce the overhead due to the use of OO programming.

DARK++ is a preemptive, muhi-threaded kemel. It always runs the highest priority thread that is

ready. An executing process is preempted if a higher priority process is found to be ready when

the currently running process makes a call to a kemel API. DARK++ implements efficient

context switching by taking advantage of dual-register-set hardware and saving and restoring

only the required registers as opposed to all of them whenever this is feasible. DARK++ also

provides support for dynamic priorities, firing rules for specifying the data channel conditions

necessary for process wakeup, and typed data channels for efficient and reliable inter-process

communication. DARK++ is implemented in C++, with a few key elements- context switching,

dual register set support, and interrupt handling written in assembly. Because it is intended for

embedded power electronics control, it currently runs on Analog Devices SHARC 21xxx 32-bit

digital signal processors. Dataflow processes, or ECOs, are implemented as C++ classes.

DARK++ uses a statically initialized set of ECO objects, together with a statically initialized set

of interconnecting data channel objects.

3.5.2.1.1 DARK++Classes

The major classes that comprise the DARK++ system are: DARKpp, ECO,

Data_Channel and some helper classes that form kemel's internal data stmctures. The

DARKpp class is a singleton, which means there is only one DARKpp object (the kemel object)

in the system. It is responsible for scheduling and mnning the processes, which are represented as

ECO objects. The ECO class is a base class from which templates for specific ECOs are derived.

83

These templates take the types of their input ports as parameters. Since there are two types of data

channels - the queued and the mailbox, which are in turn implemented as templates derived from

the base Data_Channel class, the input port type parameters for specific ECOs help specify

which of the two types of data channel each port of an ECO is. This can be tailored to suit the

specific application; i.e., the application designer can instantiate an ECO appropriately. The

ECOs read data from their input data channels, perform necessary computation and write data to

their output data channels. The data channels, on receiving data, fire the next process, by adding

their sink ECO to the ready queue, which is an internal data structure that the system uses.

I -■ unjUcloii"
I r*«rpp

Schedules, Runs Data Channal

A

<axgl,«x$2,_,argn>

C-

Fires ^..^
...■■-■■'

/

1
String_
Data Channal ■ <Scalar

p Typ«> r <SC(1*E •
,Byta

^hann ■1
w jCAJai
Data 'hirnal

'Typa>
Data (

A ' jrcn.ci_> iiniHiTia

a

Writes to / Reads from

Fig. 3-23 DARK++ System Diagram.

Fig. 3-23 gives the "big picture" of the system. It shows the most important relationships

among the main classes and the interaction amongst the respective objects.

3.5.2.1.2 Class DARKpp

The DARKpp class is the kernel class. It performs scheduling of the processes and makes use

of the ready queue and event queue data structures, which are also implemented as classes

(Ready_Queue, Event_Queue respectively).

The kernel, in its every iteration, checks for pending interrupts and handles them if there are

any. It then executes the next ready process from the ready queue if this process has a priority

greater than or equal to the currently running process. Thus, it preempts the current process if it

84

finds a new process of greater or equal priority. Preemption on encountering an equal priority

ensures fairness by preventing a process from hogging the processor for a long period.

The kernel uses the variable act ions jpending whenever it needs to check whether any

timed events have to be performed/pending interrupts have to be serviced. This variable can have

one of three values:

■ no_act ions, which indicates that there are no pending timed events/interrupts

■ f uture_actions, which indicates pending timed events

■ current_act ions, which indicates pending interrupts

Since there has to be a single kernel object in the system, a static method that returns a static

reference to a kernel object is used. This method, get Instance (), is shown in Fig. 3-24.

DARKpp& DARKpp:: getlnstanceQ
{

static DARKpp the_kernel;
return thc_kernel;

}

Fig. 3-24 The getlnstanceO method.

3.5.2.1.3 Class ECO

The ECO class is an abstract base class for ECOs containing the ECO implementation method

as a virtual method, which can be defined in the particular ECO subclass, since ECOs are

functionally distinct. The ECO objects in the system are the processes that are scheduled and

executed by the DARKpp kernel.

An ECO designer should take the following steps to write a class for a specific ECO:

• Call the base ECO class constructor from the constructor of the new class with the

following parameters: number of input and output ports, the firing rule for the ECO, the

initial priority, an array of pointers to the input ports and an array of pointers to the output

ports.

• Set the specific configuration information for the ECO in the new class's constructor.

• Write the implementation function and any other new functions if required.

Figure 3.3 shows the ECO class interface. It includes comments that explain the role of every

data member/method.

85

class ECO
public:
ImpIementationO = 0; // pure virtual function
Wait_To_FireO; //returns true or returns to OS
Register_OS0; // registers with DARKpp
Current_PriorityO; // returns current ECO priority
SetPriority(Priority); // sets ECO priority
SetIn_Ports_Ready(Firing^Mask);//set mask after write
Timed_Wait_To_Fire(int);
Delay(int);
In_Ports_ReadyO; // returns mask showing ready ports
SetProcess_State(ProcessState);
BlockedQ; // returns true if process is blocked
SetWakeup_Call(Firing_Mask); // sets the mask that fires the ECO
Wakeup_CallO; // returns the mask that woke it up
Process_StateO; // returns process state
FIRE_RuleO; // returns firing rule
Get_Heap_PositionO; // gets process's position in ready queue heap
Set_Heap_Position(int);// used to alter position of ECO in ready queue
swapCProcessState); // changes process state and goes to OS
ECO_EnvO; // returns context information for the process
StackO; // returns pointer to the stack in which process is running
StackSizeO; // returns size of process stack

protected:
Register_As_Source(int); // register as source ECO of o/p port(s)
Register_As_Sink(int); // register as sink ECO of i/p ports(s)

Fig. 3-25 ECO Class Inteiface.

3.5.2.1.4 Class Data_Channel

The Data_Channel class is a base class for all types of data channels. From this class, we

have a derived Q_Scalar_Data_Channel and Mailbox_Scalar_Data_Channel

template classes. While Q_Scalar_Data_Channel represents queued data channels, which

can contain muhiple data items (specified in the constructor), while

Mailbox_Scalar_Data_Channel represents mailbox data channels, which can contain a

single data item. It is more efficient to implement mailbox data channels separately so that we can

do away with queue arithmetic.

Besides these, the String_Data_Channel and Byte_Data_Channel classes are

provided. If required, specific data channels for user-defined data types may be defined as

subclasses of the Data_Channel class by using traits. The need for a Data_Channel base

class and template subclasses for scalar data channels, rather than a single template base class

arises because ECO objects need to store pointers to their input and output data channels (so as to

read/write fi-om the appropriate data channel). It would not be possible for an ECO object to

contain an array of Data_Channel pointers if Data_Channel were defined as a template

base class. This necessitates having a Data_Channel base class that represents any type of

data channel.

86

As mentioned, the ECO objects store an array oipointers to Data_Channel objects rather

than an array of Data_Channel objects. The rationale for this is that a data channel, essentially

being an interconnection between two ECOs, forms the output data channel for one ECO and the

input to another. Since both the source and the sink ECOs require a knowledge of the identity of

this data channel, we would need this Data_Channel object in the output data channel array of

the source ECO as well as in the input data channel array of the sink ECO, which is not possible.

Therefore references to the Data_Channel objects (Data_Channel object pointers) are

stored instead.

Data channels may be interrupt-driven or non-interrupt-driven. While interrupt-driven data

channels are input data channels to processes that are fired by interrupts, the non-interrupt-driven

data channels are written to by their source processes. This information (interrupt-driven or not)

is specified in the constructor to the data channels.

Fig. 3-26 through Fig. 3-29 show the interfaces provided by all the data channel classes.

class Data_Channel

public:
CapacityO; // max. no. of entries
Entries 0; // current no. of entries
AvailableCapacityO ;
Flush(int); // remove given no. of entries from end of queue
BlockedO; // returns true if blocked

protected^.
RegisterOSO; //registers with DARKpp
setBlockedO ;
resetBlockedO ;
/* Readbytes pass char pointer to read, no. of bytes to be read */
Readbytes(char* , int);
/* Write bytes pass char array to be written, no. of bytes */
Writebytes(char* , int);

Fig. 3-26 Data_Channel Base Class Interface.

template Q_Scalar_Data_Channel<Scalar_T> :: public Data_Channel,
template Mailbox_Scalar_Data_Channel<Scalar_T> :: public Data_Channel
public:
Read(Scalar_T&); // pass reference parameter of appropriate
// type to read
Write(ScalarT); // pass parameter of appropriate type to
// write

Fig. 3-27 Scalar_Data_Channel Template Class Interface

87

class String_Data_Channel:: puUic Data_Channel

publicx
Read(char*); //pass char pointer to read in string
Write(char*); //pass char array write

Fig. 3-28 String_Data_Channel Class Interface.

class Byte_Data_Channel:: public Data_Channel

public:
/* Read bytes follows: pass char pointer to read, no. of bytes to be
read */
Readbytes(char* , int);

/* Write_bytes follows: pass char array to be written, no. of bytes */
Write bytes (char* , int); ____^_

Fig. 3-29 Byte_Data_Channel Class Interface.

3.5.2.2 Client Code

Having discussed the important classes and the framework of the system, we now explain

how these can be used by an application designer to run a dataflow control application.

We consider the closed-loop three-phase inverter as an example control application and show

how it can be run using our kernel. Following is the dataflow graph for the application.

This application comprises 9 ECOs and 20 data channels. To run this application, the data

channel objects first have to be declared. Following this, the ECO objects are declared with the

association amongst them being established by providing the input and output port information in

the constructors of the ECOs. The constructor takes the other necessary information as well, such

as the configuration information for the ECO, the firing rule, the initial priority of the ECO and

the size (in bytes) of stack space required to run the ECO.

Fig. 3-6 shows the template code for a sample ECO - the Adc_Va. As we can see, it takes

the types of the input and output ports as parameters. The implementation body is a -while

structure that fires the ECO again if it has data in its input port. Based on which firing mask

triggered the ECO (wakeup_call), the appropriate action is performed. These actions are also

provided for the ECO.

template <class Bool_Data_Channel_i, class Float_Data_Channel_o >

void Adc_Va <class Bool_Data_ChanneI_i, class Float_Data_Channel_o>

:: ImplenientationO{ do
{ switch (wakeup_call)

{
case ADC_VA_FIRING_MASK_DEFAULT: default_actionO; break;

case ADC_VA_FIRING_MASK_EXCEPTION: exception_liandling(); break;
}

 }while fVVait To FireQ);

Fig. 3-30 Template for ECO Adc_Va.

void default_action0
{ /* Input variable */
boot start;

/* Output variable */
float va;

int Adc_offset;
float Adc_scale;
float Va_offset;
float Va_scale;

/* Intermediate variable */
int Adc_value;

Adc_offset = confg.Adc_offset;
Adc_scale = confg.Adc_scale;
Va_offset = confg.Va_offset;
Va_scale = confg.Va_scale;

/* Read input from data channel */
Adc_Va_Start->Read(start);

Adc_value = *(int *)confg.Data_buffer;
Adc_value — Adc_offset;

va = (float)(Adc_value) * Adc_scale;

va = (va-Va_offset) * Va_scale;

va = 60.0;

/* Update output data channel */
Adc_Va_Va->Write(va);

_L
Fig. 3-31 Default action for ECO Adc_Va

3.5.2.3 DARK++ Kernel Features

3.5.2.3.1 Thread Management

An ECO can be viewed as a process that executes its Implementation code provided by

the ECO designer. The various possible states of these processes are: ready, run, blocked,

89

waitjbrjire, timedjwait, timedwaitjbrjlre and dead. When the kernel starts, each thread is in

the waitjbrjire state. A process is in ready state once its required input data channels have data

tokens in them. The ready process of the highest priority is run by the kernel and such a process

(an executing process) is in the run state. The process is blocked when it tries to write to a full

data channel.

After every read operation on a data channel, the status of the source ECO (ECO that writes

to this data channel) is checked. If the source ECO is found to be blocked, then it is unblocked.

Similarly, after every write operation, the mask of its sink ECO (ECO that reads from this data

channel) is updated; i.e., the bit corresponding to the data channel in question is set. Thus, while a

read operation could unblock a process blocked on a data-channel, a write operation could fire it.

On receiving
data on i/p ports

Fig. 3-32 Thread state diagram

The wait_to_f ire fimction can be used to fire the ECO again. If the ECO is not ready for

firing, it goes into the waitjorjire state. The user can also delay the execution of the ECO for a

pre-determined time, which puts the ECO into timed_wait state. The timed_waitJorJire state is

a combination of waitJorjire and timed_wait. An ECO in this state can be fired if a firing mask

becomes true or if the time period elapses. The ECO goes into the dead state once it finishes

execution.

3.5.2.3.2 Context Switching

Operating systems can have one of two types of schedulers:

• Active Scheduler

90

• Passive Scheduler

An active scheduler runs as a separate thread and therefore necessitates a context save and

restore (of the status of all the registers) every time there is a transfer of control between the

scheduler and a process. A passive scheduler, on the other hand, does not run as a separate thread

and is called by the process threads (through normal function calls). Although the passive

scheduler approach obviates the need for explicit context save and restore, thus making it faster,

this approach does not allow for preemption because if there has been a transfer of control from a

process to the scheduler through a function call, the scheduler cannot suspend the currently

running thread if need be, to run a new higher priority process. Control simply has to go back to

the process thread from the scheduler. DARK++ therefore uses the active scheduler approach, in

which context switches are brought about by the use of calls to the set jmp and longjmp

functions. In the normal set jmp and longjmp calls, the context is entirely saved and restored,

respectively. This means the contents of all the registers in the processor are saved during a

setjmp and restored during a longjmp. However, DARK++ exploits the dual-register-set

hardware provided by the Analog Devices SHARC 21160 micorprocessor for a substantially

more efficient context switching. This approach is detailed in the following subsection.

Many digital signal processors used in embedded control systems, ADSP 21160 being one,

have two sets of registers for increased performance - the primary set and the alternate set.

DARK++ uses the primary register set for the kemel and the alternate register set for the process

threads. Due to the use of two independent sets of registers for the kemel and the process threads,

all that is required during a transfer of control between the two is flipping of a bit in a control

register, which denotes the current mode (indicating whether the currently running thread uses

primary set/secondary set), and saving/restoring some key status registers. DARK++ uses

customized setjmp and longjmp assembly language procedures that selectively save/restore just

these required registers.

Since most context switches in dataflow applications occur between the scheduler and

executing threads, minimizing the cost of such switches increases the performance significantly.

The use of the dual-register-set architecture in DARK++ for high-speed context switching

between the scheduler and application threads has been found to reduce the switching time by

80% [vi].

91

3.5.2.3.3 Time Management

DAEK++ provides APIs to allow ECOs to request a timed delay. In most other RTOSes, the

kernel checks each waiting thread at every clock tick, and adds it to the ready queue when the

waiting period has expired. However, this technique can introduce unnecessary overhead if there

are a number of waiting threads. Hence DARK++ uses a different approach to handle timed

delays. When the timed_wait () or timed_wait_f or_f ire {) method is called, the delay

is converted into an absolute time by adding the current system time to it and then stored in the

ECO (process) object. The thread is then added to the waiting queue in which the threads are

arranged in ascending order by absolute time and actions_pending is set to

future_actions.

The kernel checks for actions_pending and adds the process back to the ready queue

when the deadline has expired. To check whether the deadline has been reached, it compares the

system time with the thread wakeup time of the first thread in the waiting queue. The scheduler

needs to check only the first thread in the waiting queue unless that thread's waiting period has

elapsed.

3.5.2.3.4 Interrupt Handling

There are many RTOSes that support interrupt handling through the use of compiler-provided

mechanisms, using C functions that can be used as interrupt routines. This method involves a

substantial overhead in context switching, since all registers are saved and restored while

handling interrupts. The C compiler provided by Analog Devices for its SHARC DSPs supports

this approach, and in addition, also provides the option of using the alternate register set for

interrupt handling (since the C runtime uses only the primary register set). However, DARK++

caimot use this option, since it uses both the alternate and primary register sets.

DARK++ uses an alternative approach for handling external interrupts. This method provides

performance comparable to that of using the alternate register set for interrupt handling. Here,

rather than placing actions directly in the interrupt handler itself, DARK++ uses a minimal

footprint handler that simply logs incoming events into the event queue, which is managed by the

DARK++ scheduler. The interrupt handler runs in the currently active register set and only needs

to save and restore a couple of registers. It logs a 32-bit code representing the interrupt that was

received, into the event queue (a circular buffer of incoming events) and then returns control to

the kernel. The status of the event queue is reflected by the actions_pending variable that

we have already explained.

92

DARK++ also supports clock interrupts and non-maskable interrupts (NMI). The clock

interrupt ISR is written in assembly and simply increments the kernel data member,

current_time that is used for time management. Only a few registers required for

incrementing a variable are saved and restored in this ISR. NMI is used for emergency condition

notification and requires a time critical response. In most cases, it results in a call to the

application's emergency shutdown procedure, bypassing all other kernel as well as application

code.

3.5.2.3.5 Mutual Exclusion

Since threads have no shared memory and communicate only through data chaimels, most

mutual exclusion problems do not arise in DARK-H-. However, there is one condition that needs

to be handled. If interrupts occur when a process is executing, then control goes to the kernel.

Under such a circumstance, it is important to ensure that the kernel resumes and completes the

execution of the process thread that was suspended due to the interrupt, as soon as it executes the

interrupt handler. This is because the event associated with the interrupt might have caused a

higher priority process to be triggered. If this higher priority process is allowed to preempt the

suspended process, then there is a possibility for data to be corrupted if the two processes access a

common data chaimel. In such a scenario, however, the interrupt handler writes a 32-bit code into

the event queue and control returns to the interrupted thread so that the event associated with the

interrupt actually gets executed only after control returns to the kernel thread.

3.5.2.3.6 Volatile Declarations

In the embedded system context, it is imperative to have an efficient and optimized

executable. With the optimizer enabled, typically several variables are cached in registers to make

data fetches more efficient.

DARK+4- uses the dual-register-set hardware for efficient context switching. This means that

the kernel and the process threads work with distinct registers. Consequently, the two threads use

different registers to cache the same data and this could lead to inconsistencies. It should be noted

here that if all methods that manipulate data members private to their class were called through

normal method call, then this problem does not arise, as these data members would not be cached

in their callers. However, in the interest of our high performance objective, methods are all

inlined, and this causes even the private data to be cached in registers, as part of the caller's

thread. Therefore it is critical to identify all data that can potentially be accessed by both the

93

kernel and the processes threads, and declare them volatile to ensure that they always get

accessed from the memory instead of from registers.

The front and rear data members of the Data_Channel class, and the

in_ports_ready, wakeup_caH and process_state data members of the ECO class

are declared volatile since these are accessed in the Read/Write operations, which can potentially

be called from the kernel thread and the process thread.

In the context of mtemipt service routines (ISRs), an important fact to consider is that

interrupts could occur at anytime during the execution of the kernel/process thread and so if the

ISR shares any data with either of these threads, then such data has to be declaredvolatile in order

to avoid the executing thread from using an incorrect value that was cached in a register prior to

the occurrence of the interrupt, after control returns back from the ISR. The

actions_pending variable is declared volatile for this reason.

3.5.2.3.7 DARK++ Configurable Options

The DARK++ kernel can be configured to yield four distinct versions. These are obtained by

selectively retaining/removing certain kernel features. Removal of features leads to an increase in

performance with a concomitant reduction in run-time flexibility. The application designer can

select the most appropriate DARK++ version for a given application's requirements. These are

compile-time configurable by preprocessor macros. Table 1 lists the features in different versions.

The full-featured version of DARK++ has nothing disabled, and is a muhi-threaded

preemptive kernel. This version of the kernel schedules threads dynamically based on their firing

rules and priorities. After every OS call {read and write operations), the scheduler is invoked to

check for higher- and equal-priority threads. A context- switch takes place if and only if a higher-

or equal- priority thread is ready. Preemption by an equal-priority thread ensures fair scheduling.

This version is enabled by the preprocessor directive PREEMPT I VE_MTHREADED. It should be

noted here that DARK++ offers preemption in a restricted sense, rather than the more common

"textbook" sense, wherein preemption means stopping an executing thread as soon as a higher

priority thread becomes ready. Here preemption happens only during API calls. However, the

dataflow paradigm rules out the possibility of a higher priority process becoming ready while the

current process is executing. This is because a process can become ready only when its source

process has written data to its input data channel, but the source process thread could not have

been running in conjunction with the currently executing thread.

94

The non-preemptive version of DARK++ does not invoke the scheduler on every OS call but

instead, runs each thread until the thread suspends itself waiting for input data. Thus we avoid the

overhead of caUing the scheduler after every read and write operation by sacrificing immediate

response to higher-priority threads. This version is enabled by the preprocessor directive

NONPREEMPTIVE_MTHREADED.

The other two versions of DARK++ are single-threaded and avoid the time spent in context

switching, thereby giving a significant performance boost to the application. The single-threaded

approach is ideal for monotonic applications that execute sequentially, but unsuitable for

applications that are highly dynamic. While the dynamically scheduled single-threaded version of

DARK++ uses firing rules and priorities to select a process for execution, the statically scheduled

single-threaded version uses a pre-computed firing order for threads, ehminating all use of

priorities and firing rules, and is therefore the fastest. The single-threaded dynamically scheduled

version is enabled by the preprocessor directive SINGLETHREAD_DYNSCHD and the single-

threaded statically scheduled version is selected by SINGLETHREAD_STATSCHD.

These directives in turn use three other directives to control the features of the kernel -

enable/disable preemption, enable/disable multithreading, and enable/disable dynamic

scheduling. These are PREEMPTIVE, MTHREADED and DYNSCHD respectively. As mentioned,

data Channels are of two types - message queues and mailboxes. A mailbox is an inter-processor

data channel and is nothing but a special case of message queue where the size of the queue is

one. This obviates the need for queue arithmetic and is therefore more efficient.

Multithreaded/
Single-threaded

Kernel Version Preemptive/
Non-preemptive

Dynamically Scheduled/
Statically Scheduled

MTHREADED=1
PREEMPTIVEMTHREADED PREEMPTIVE=1 DYNSCHDr:!

NONPREEMPTIVE_MTHREADED PREEMPTIVE=0 DYNSCHD=1

MTHREADED=0
SINGLETHREADDYNSCHD PREEMPTIVE=0 DYNSCHD=1

SINGLETHREAD_STATSCHD PREEMPTIVE=0 DYNSCHD=0

Table 3-14 Configurable options in DARK++.

3.5.2.4 Real-time Support

Real-time scheduling algorithms could be based on fixed priorities or dynamic. While the rate

monotonic priority assignment (RMA) algorithm, which assigns higher priority to shorter tasks is

the optimal fixed-priority algorithm, the deadline driven scheduling algorithm is the optimal

95

dynamic scheduling algorithm. The dynamic scheduling algorithms, however, in general, have a

lot of overhead associated with them.

DARK++ provides the user the option of enabling real-time support. It has provision for the

user to assign a function handle that will be used to run the provided scheduling algorithm. If this

handle is null then the defauh algorithm that DARK++ uses is the fixed-priority RMA algorithm.

In order to meet the high-performance objective, the complex real-time support necessary for

POSIX compUance has been avoided in DARK++.

DARK-H- provides the following simple API to monitor real-time deadlines.

A deadline for an ECO can be set using the method:

void ECO :: set_deadline(int time);

The time parameter specifies the time by which the ECO has to finish its execution. When

this method is invoked, time is converted to an absolute time by adding the current system time

to it and the ECO is added to the deadline queue.

The following method can be used to ascertain whether an ECO has met its deadhne:

bool ECO :: check_deadline();

This method removes the ECO fi-om the deadline queue and returns true if the ECO met its

deadline.

The DARK++ scheduler checks the first entry of the deadline queue in each switching cycle.

If it finds an ECO that missed its deadline, it calls a user-provided handler.

3.5.3 Experimental Evaluation

This chapter explains the performance experiments carried out with DARK++. It presents the

performance results and a comparison with the corresponding results for DARK. We also explain

the reasons and the implications of the obtained resuhs. We have carried out empirical evaluation

using three power control applications - the open-loop 3-phase inverter, the closed-loop 3-phase

inverter and the closed-loop control for 3-phase boost rectifier.

In the following section we explain dataflow applications and the three applications used in

our evaluation in particular, providing a brief overview of the various ECOs in each of them and

an explanation of the primary functions performed in a switching cycle. We present the dataflow

96

graph for each of them. Following this, in section 6.2 we present the results of the experiments

and we conclude with a discussion of the obtained results

The following subsections explain three power-electronic dataflow applications that have

been used to carry out performance experiments. These are - open-loop 3-phase inverter, closed-

loop 3-phase inverter and boost rectifier. Following these, Section 6.2 presents the empirical

evaluation details and the results.

3.5.3.1 Performance Results

This section discusses the results obtained during the performance evaluation experiments of

the kernel. The experiments were conducted on Analog Devices-SHARC 21160 digital signal

processor. The Analog Devices VisuaIDSP++ simulator was used to run the experiments and

collect profiling information. Experiments were conducted on the three dataflow applications

described.

We present the results obtained by comparing the performance of the different versions of

DARK++ and DARK (fiill-featured, non-preemptive, single-threaded statically scheduled, single-

threaded dynamically scheduled) on these three control applications. Table 3-15 through Table

3-17 show the data for the three applications run using message queues. Table 3-18 though Table

3-20 show the data for the applications when run using mailboxes. The tables show the total

number of instruction cycles taken by DARK and DARK ++ for one switching period of the

kernel for the mentioned applications. This is broken down into six categories of operations-

ECO execution, dispatcher, context switching, ready queue operations and other operations. We

can compare the contributions of each of these factors to the execution time for the application in

the case of DARK++ with those in the case of DARK. Following this, we present graphs that are

obtained by normalizing the overhead of DARK++ over the three control apphcations. Fig. 3-33

is based on the performance of the applications using queued data channels and Fig. 3-34 shows

the same data for the applications run with mailboxes.

97

Table 3-15 Performance Results in terms of number of instruction cycles for the open-

loop inverter- with message queue data channels.

Operations
Full-featured Non-preemptive

Single-threaded
dynamic scheduled

Single-threaded
static scheduled

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK-H-

ECO
execution 235 186 235 186 235 186 235 186

Dispatcher 529 425 529 425 219 177 212 192

Context
switching

1148 1148 1148 1148 0 0 0 0

Ready queue
operations

525 924 525 882 525 831 0 0

Data channel
operations

1304 917 999 680 945 680 312 536

Other OS
operations

462 626 460 486 77 280 0 0

Total 4203 4226 3896 3807 2001 2154 759 914

Table 3-16 .Performance Results in terms of number of instruction cycles for the

closed-loop inverter- with message queue data channels.

Operations
Full-featured Non-preemptive Single-threaded

dynamic scheduled
Single-threaded
static scheduled

DARK DARK-H- DARK DARK++ DARK DARK++ DARK DARK++

ECO
execution 583 620 583 623 583 623 583 623

Dispatcher 679 553 679 553 297 270 270 268
Context
switching 1476 1476 1476 1476 0 0 0 0
Ready queue
operations 612 1719 612 1236 612 1031 0 0
Data channel
operations 2659 2226 2059 1526 2059 1526 731 926
Other OS
operations 594 881 594 727 203 467 0 0
Total 6603 7475 6003 6141 3754 3917 1584 1817

The execution time for the three applications, as we may note from the above tables,

increases as the applications increase in complexity, with more number of ECOs and therefore,

more computation, more communications, and also increased context switching and scheduling

overhead. We see that the full-featured version involves maximum execution time since it

provides the maximum number of features; it performs a check for an equal or higher priority

ready process at the end of every Read and every Write operation and transfers control to the ker-

98

Table 3-17 Performance Results in terms of number of instruction cycles for the boost

rectifier- with message queue data channels.

Operations
Full-featured Non-preemptive Single-threaded

dynamic scheduled
Single-threaded
static scheduled

DARK DARK++ DARK DARK++ DARK DARK-H- DARK DARK++

ECO
execution 778 638 778 638 778 638 778 638

Dispatcher 1354 1057 1354 1057 585 495 567 529
Context
switching 2952 2952 2952 2952 0 0 0 0
Ready queue
operations 1811 2240 1811 2190 1811 2028 0 0
Data channel
operations 4252 3762 3174 2439 3174 2439 1020 1852
Other OS
operations 1224 2180 1224 1844 205 1317 0 0

Total 12371 12829 11293 11120 6553 6917 2365 3019

Table 3-18 Performance Results in terms of number of instruction cycles for the open-

loop inverter - with mailbox data channels.

Operations
Full-featured Non-preemptive Single-threaded

dynamic scheduled
Single-threaded
static scheduled

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++

ECO
execution 235 186 235 186 235 186 235 186
Dispatcher 529 425 529 425 219 177 212 192
Context
switching 1148 1148 1148 1148 0 0 0 0
Ready queue
operations 525 924 525 882 525 831 0 0
Data channel
operations 1040 521 734 307 734 307 67 280
Other OS
operations 462 626 450 486 121 357 0 0
Total 3939 3830 3621 3434 1834 1858 514 658

99

Table 3-19 Performance Results in terms of number of instruction cycles for the

closed-loop inverter- with mailbox data channels.

Operations
Full-featured Non-preemptive

Single-threaded
dynamic scheduled

Single-threaded
static scheduled

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++

ECO
execution 778 638 778 638 778 638 778 638

Dispatcher 1354 1057 1354 1057 585 495 567 529

Context
switching 2952 2952 2952 2952 0 0 0 0

Ready queue
operations 1811 2240 1811 2190 1811 2028 0 0
Data channel
operations 3699 2071 2640 1588 2640 1575 216 930

Other OS
operations 1224 2180 1224 1844 88 1317 0 0

Total 11818 11138 10759 10269 5902 6053 1561 2097

Table 3-20 Performance Results in terms of number of instruction cycles for the boost

rectifier - with mailbox data channels.

Operations
Full-featured Non-preemptive

Single-threaded
dynamic scheduled

Single-threaded
static scheduled

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++

ECO
execution 583 620 583 623 583 623 583 623

Dispatcher 679 553 679 553 297 270 270 268
Context
switching 1476 1476 1476 1476 0 0 0 0
Ready queue
operations 612 1719 612 1236 612 1031 0 0
Data channel
operations 2271 1041 1698 887 1698 888 220 333

Other OS
operations 594 881 594 727 181 467 0 0

Total 6215 6290 5642 5502 3371 3279 1073 1224

nel if there is one. With the non-preemptive version of the kernel, an executing thread necessarily

has to run to completion before another thread can begin execution, even if a higher priority

thread becomes ready during the execution of the current thread. Hence process threads need to

do no checking and switching of control to the scheduler. This significantly brings down the

execution time. The single-threaded versions have no notion of separate process and scheduler

threads. Instead, every process is run by a normal method call. Therefore single-threaded systems

100

are necessarily non-preemptive. The single-threaded dynamically scheduled version supports the

notion of firing rules and processes are scheduled dynamically based on the sequence of Writes

and the corresponding triggers to the sink processes. Since the process to be run at any time is

determined dynamically, this version of the kernel still involves ready queue management

operations. Hence although it is slower than the earher two versions discussed, it is slower than

the single-threaded version in which processes have a pre-assigned execution order and the kernel

essentially is a dispatcher and does no scheduling.

We now present the performance resuhs for the three applications run with mailbox data

channels. Mailboxes are data channels with unit capacity. Hence mailbox data channel

management is much simpler involving no queue arithmetic, and simpler overflow handling. The

above resuhs indicate that DARK++ has performance comparable to that of DARK. The full-

featured version of the kernel, in particular, outperforms that of DARK for the open-loop inverter

and for the boost rectifier applications running on mailbox data channels, while the closed loop

inverter running with mailbox data chaimels on DARK++ is a shade slower than on DARK (1.2%

slower).

Performance overheads normalized over three control
applications run on queued data channels

8 3000
«, 2500
O 2000
.2 1500
o 1000

■K 500
CO

= 0
DARK DARK++

Full-featured

DARK DARK++

Non-preemptive

DARK DARK++

Single-threaded
dynamic scfieduled

lliHIIII , ll''''"l

DARK DARK++

Single-threaded
static scheduled

Kernel

EH ECO Execution Q Dispatcher B Context Switching

B Ready Queue Operations ■ Data Channel Operations B Other Operations

Fig. 3-33 Performance results for the two kernels with message queues.

101

Performance overheads normalized over three control applications
run on mailbox data channels

«, 4500
« 4000
g, 3500
O 3000
= 2500
•2 2000
a 1500
i: 1000
g 500

0

DARK DARK++

Full-featured

DARK DARK++

Non-preemptive

Kernel

DARK DARK++

Single-threaded
dynamic scheduled

tliiMil

DARK IDARK++

Single-threaded
static scheduled

m ECO Execution n Dispatcher
■ Ready Queue Operations ■ Data Channel Operations

I Context Switching
I Other Operations

Fig. 3-34 Performance results for the two kernels with mailboxes.

Following are graphs that provide a good summary of all of the above data. They present the

overheads imposed by each of the four versions of the two kernels, normaUzed over the three

control applications. The first graph is for the applications run using message queues and the

second one is for the applications run using mailboxes. After presenting these graphs, we will

discuss the results gathered by comparing the GO versus the non-OO kernel.

3.5.3.2 Discussion of tlie performance data

It may be observed that the multithreaded versions of DARK++ running the applications

using message queues resulted in marginally lesser speed than that of DARK, while miming the

applications using mailboxes showed a performance gain. The data chaimels operations, which

are implemented as macros in the C version of the kernel, are inlined methods in the C++

versions. Because these operations were actually being inlined by the compiler more often in the

case of mailboxes than in the case of message queues, there was a significant performance gain.

The single-threaded versions of DARK++ impose significant overhead. The DARK++

dispatcher for this version is slower than the DARK dispatcher unlike for the other versions. This

is because, while the multithreaded kernel uses calls to setjmp to execute processes in all but the

first switching cycle of the kernel, the single-threaded kernel always makes an explicit call to the

ECO Implementation method and since this is a virtual method, there is a considerable overhead

introduced due to the dynamic resolution to effect the call.

102

The context switching times are equal in DARK and DARK++ since both use the same

custom setjmp and longfmp assembly functions to accomplish this. While the ECO execution and

the scheduler execution times are comparable in the two cases, the ready queue operations have a

significantly higher contribution to the entire execution time in the case of DARK++ than in

DARK. This is because all accesses to any of the ready queue data members have been counted

imder this category and there are a number of calls to such operations - e.g., calls to a method that

returns the number of items present in the ready queue. Such calls are made both by the

scheduler, as well as from the data channel operations in the case of preemptive scheduling, to

check for other high-priority ready processes that may be waiting. Typically, it has been observed

that simple methods that return the value of a data member take between 7-9 instruction cycles.

Hence even if such a method is inlined by the compiler, there is an overhead incurred by the

frequent use of such methods.

The "other operations" category also takes more number of instruction cycles in the case of

DARK-H- than in DARK due to the same reason as mentioned above. There are some generic

methods that are frequently used by various callers to retrieve some data members and these

introduce significant overhead.

It is worth noting that a great many operations that are specified as macros in DARK are class

methods in DARK++, with die "inUne" keyword. Therefore, while these operations are

guaranteed to be preprocessed and efficient in DARK, many of them are not inlined by the

compiler in DARK++. A better performance could have been achieved with DARK++ if it were

possible to guarantee inlining of all methods. Also, the unpredictability of a method actually

being inlined could lead to marginal irregularities in performance.

The single-threaded versions of the kemel need do no context switching and hence the

number of instruction cycles for the category is zero. The single-threaded statically scheduled

kernel makes use of a precomputed order to execute the processes sequentially and hence does

not use the ready queue.

3.5.3.3 Summary

From the data gathered on these three applications and from the above discussion, we may

conclude that carefiil design in OO paradigm can yield appreciable performance. We summarize

below, the most important points about 00 design and performance issues:

103

• As we have seen, it very naturally imposes the need for more method calls. While one can

choose to specify such methods with the "inline" keyword, since it relies on the discretion of

the compiler, there may be inefficiencies (if the compiler does not actually inline them). The

disadvantage with inlining is that for huge applications, the entire code may not fit into

memory if the memory offered by the embedded system hardware is limited.

• Another related point is that, while it is often worthwhile to specify some frequently used

(small) operations as macros in C, it may be inappropriate to do this in C++ (an OO

language) where more often than not, we want operations as methods in a class and

specifying these as macros might lead to a sloppy design. In DARK++, as stated earlier, we

have specified a few generic operations used by the data channel Read and Write methods as

macros. The question really is a tradeoff between elegance and performance.

• It is best to avoid virtual methods as these rely on dynamic binding, which impact

performance considerably. The performance numbers for the single-threaded statically

scheduled version of DARK++ reflect this fact very clearly. However, if the system being

designed compels the use of virtual methods, one necessarily pays for the V-table look-up

and resolution during run-time. However, we often lose the flexibility and natural

extendibility through inheritance when we avoid usage of virtual methods.

• There are some important points to remember while working on 00 design for performance-

critical systems. Use of dynamic memory allocation, perhaps by creating objects "on the fly"

is a bad idea for a system where performance is critical. This should be avoided.

• Templates are often handy and neat to use in the OO design and user-defined templates do

not have any inherent performance concerns associated with them since template

instantiations take place before run-time.

3.6 Transparent Distributed Messaging

The protocols designed so far for power electronics systems are for single controller systems

or multiple controller systems with fixed processor allocation. Single controller systems fail to

use the advantages offered by distributed systems, which are improved efficiency and greater

fault tolerance. Using multiple controller systems with fixed processor allocation severely

restricts the flexibility and hence the usage of the system.

In this report, we present a protocol for transparent inter-processor communication across a

network thereby allowing transparent distribution of any multi-controller application. The

104

protocol is designed such that it can run the same apphcation without any kind of code change in

virtually any kind of distributed configuration, where configuration is the number of controllers

used in the system plus the processor allocation strategy used. The protocol works well even for

single-controller applications and for pre-defined allocation of processors to controllers. The

protocol, thus offers a lot of flexibility and ease of use in running a multi-controller application

and evaluating its performance using different number of controllers and/or processor allocation

strategy. The protocol also enables an application, with an automated processor allocation

strategy, to transparently configure itself for any number of processor nodes without requiring

any changes or recompilation.

Dataflow architecture is a software architecture used to design software for plug and play

power electronics building blocks. It is a data-driven architecture consisting of a large number of

program elements to support component-level design. The embedded system being designed

consists of a number of Elementary Control Objects (ECOs), which are concurrently executing

entities. The ECOs are connected to each other through data channels. The ECOs read data fi-om

the data channels, process the data and generate the output.

The ECOs are scheduled by their firing rules. Firing rule for an ECO indicates the input

channels on which the ECO should wait for data before being fired. A read on a data channel can

unblock an ECO waiting to write data into that data channel. Similarly, a write operation can fire

an ECO waiting for input on that data channel. The execution of the ECOs is managed by the

DARK Operating system [2].

The application programmer provides a DFG (Dataflow graphs) descriptor file, which

contains information on the number of ECOs present in the system and the data channels that

connect them. The application programmer also provides implementation of the ECOs.

The protocol makes use of the existing dataflow architecture to provide for transparent

message passing between ECOs present on different controllers.

3.6.1 Design and implementation

Based on the number of controllers available, the system automatically allocates ECOs to

different controllers. The controllers will be placed on a ring, which operate based on a protocol

called PESNET [x]. The ECOs communicate asynchronously with each other by reading or

writing data into the data channel. They are not aware of the number of controllers present in the

system and hence of the distributed nature of the communication.

105

The protocol needs to ensure that communication between ECOs on different controllers is

carried out transparently. This necessitates orderly arrival of messages and special handling of

loss messages.

3.6.1.1 Design

Fig. 3-35 (a) describes the protocol for sending a data packet from the source ECO to a

destination ECO, where the ECOs are on different controllers. The ECOs on a single controller

communicate with each other by reading or writing data from data charmels. Distributed

communication also occurs through data channels. In case of distributed communication, the

source ECO writes data to a distributed data channel. The OS processes the data in the data

channel, packs it into packet and passes the packet onto the FPGA. Note that the OS does not yet

remove the data from the channel. The packet is then sent onto the ring by the FPGA.

Fig. 3-35 (b) describe the protocol on the receiver side. When the FPGA receives a data

packet, it stores the packet, to be later processed by the OS. The OS extracts data from the data

packet and writes it to the data channel identified by the packet. It then prepares an

acknowledgement packet acknowledging the number of data bytes written to the data channel.

The acknowledgement packet is then passed to the FPGA. The FPGA sends the packet over the

ring. Fig. 3-35 (c) explains the protocol when an acknowledgement packet is received. The OS

deletes the data from the data channel based on the number of bytes acknowledged.

106

Data —► data channel

ir

Data channel pointer->■ send_queue

ir

Process the send_queue

ir

Data —► Packet

^ '

Packet'^- FPGA_send

T
Data channel pointer—► ackqueue

Send packet on the ring

(a) Packet send protocol

FPGA-4— ack packet

Delete data from data
chaimel (#bytes deleted = #
bytes acknowledge)

(c) Acknowledgement received protocol

Send acknowledgement (#bytes = 0)

Packet ► FPGA receive

Process FPGA receive

Yes

data channel

Blocked

Write part of
packet data that
fit in data channel

Send acknowledgement (#bytes= bytes written in
data channel)

(b). Packet Receive protocol

Fig. 3-35 Dataflow messaging protocols.

107

3.6.1.2 Data structure

The protocol makes use of two circular buffers - the sendqueue and the ack_queue. A

send_queue entry points to a distributed data channel that has data to send. An ack_queue entry

points to a distributed data channel that is awaiting an acknowledgement for the packet sent. Note

that the sendqueue and the ackqueue together will contain not more than one entry

corresponding to each distributed data channel. The size of the sendqueue and ackqueue is

equal to the number of distributed data channels in the system.

The status of a data channel is indicated by the value stored in the alloctype field of the data

channel. The alloctype field of a distributed data channel can have one of the three values

1. WAITINGTOSEND when the data chaimel contains data to be sent across the ring

2. SENT when a packet has been sent and an acknowledgement is awaited and

3. EMPTY when the data channel is empty and is not waiting for an acknowledgement.

4. The alloctype field of a normal data channel will always have value NULL.

The FPGA uses two fixed size buffers - FPGAsend and FPGAreceive. The FPGAsend

stores packets to be sent on the ring while the FPGAreceive stores packets received from the

ring. Data structures for the protocol are as shown in Fig. 4. Note that the size of the sendqueue

and ackqueue is equal to the number of distributed data channels.

3.6.1.3 Implementation

The sender's side protocol is described by the dotted lines in Fig. 3-36. When an ECO writes

data into a distributed data chaimel with alloctype field as EMPTY, a pointer to the data channel

is stored in a sendqueue entry. The alloctype field of the data channel is changed to

WAITING_TO_SEND.

When the operating system scheduler is called, it checks for entries in the send_queue. If the

sendqueue is not empty and there is space in the FPGAsend buffer, the scheduler reads data

from the data channel pointed to by the send_queue entry writes it into a packet and then stores

the packet in the FPGA_send buffer. A pointer to the data channel is removed from the

sendqueue and added in the ackqueue. The alloctype field of data channel is changed to

SENT. Note that the data is not yet removed from the data channel.

108

Fig. 3-37 shows the packet structure. The packet contains addresses of the source and

destination controllers. The datachannel_id field is used to uniquely identify the data channel and

thereby the ECOs associated with the data channel.

ECO Distributed data channel send_queue

t]--fs^

>

Controller

__iL

I I 1^ ack_queue

FPGA

nng

Fig. 3-36 Data structures.

typedef struct
{
Net_Address froin_address : 8;
Nct_Address to_address : 8;
char datachannel_id : 16;
packet_cominand command : 4;
unsigned int number_of_bytes: 4;
char data [9];

} Digested Packet;

Fig. 3-37 Pacltet structure.

The command field is use to indicate the packet type. The command field can have one of the

two values -

1. data_packet

2. ack_packet

109

For a data packet, the number_of_bytes field indicates the number of data bytes contained in

the packet. The number_of_bytes field for an acknowledgement packet indicates the number of

data bytes acknowledged by the receiver. 4 bits have been allocated for the command field to

provide for fiiture improvements.

When the FPGA gets an empty token on the ring, it grabs the token and passes the data

packet onto the ring.

The FPGA on the receiver side removes the packet from the ring and stores it in the

FPGA_receive buffer, if there is space in the buffer. If the FPGAreceive buffer is full, the FPGA

sends out an acknowledgement packet acknowledging zero bytes of data.

The operating system scheduler checks the FPGA_receive buffer for any incoming packets. If

the receive buffer is not empty, it reads the packet and checks if there is space in the data channel

identified by the packet. If there is space for the entire data packet, then the data packet is written

into the data channel. Otherwise, the scheduler overwrites the oldest data element or the newest

data element or writes part of the data that fit into the available space in the data channel. These

actions are based on value of the Overlflowstyle field of the data channel. In all cases, an

acknowledgement packet is sent back acknowledging the number of bytes written into the data

channel.

When an acknowledgement packet is received, the number of bytes acknowledged

determines the number of bytes to be deleted firom the data channel. The pointer to the data

channel in the ackqueue is then removed.

3.6.1.4 Fault Tolerance

In order for the messaging to be transparent, the design needs to ensure that packets arrive in

order. Orderly arrival of packets is ensured by requiring every packet to be acknowledged and the

next packet for a given data channel be sent only after an acknowledgement is received for the

previous packet.

When a packet is sent over the network, a copy of the data is stored on the sender's side and

is deleted only after an acknowledgement for the data is received. If there is not enough space for

the entire packet data in the data channel on the receiver side, it is possible that only part of the

data gets written into the data channel and hence only part of the data gets acknowledged. In that

case, only those data bytes that are acknowledged are deleted and an attempt is made to re-send

the unacknowledged data bytes.

110

For packets lost due to node or ring failure, the protocol relies on the underlying PESNet

protocol to ensure fault tolerance. The PESNet protocol makes use of a dual, counter-rotating

fiber optic rings to improve the fault tolerance of a network. In case of a node or a link failure, the

bi-directional ring allows the message can backtrack. Thus, the PESNet protocol ensures that

there won't be any missing packets irrespective of a node or a link failure.

3.6.2 Analytical performance assessment

An analysis of the system performance is performed based on factors such as network speed,

number of nodes on the ring and saturation of the network.

Let us consider a network of N nodes. Let P be the size of a packet in bits and R be the

transmission rate of the network. Then, the time required for a complete cycle of a packet that is

the time between the transmission of a packet by a sender, its processing at the receiver and the

return of an acknowledgement packet from the receiver back to the sender is given as

t cycle J- process "^ ^ send "*" A ack

where,

Tcycie = Time to transmit packet from sender to receiver

Tproccss = Time to process the packet at the receiver

Tack = Time to transmit the acknowledgement from the

receiver back to the sender

The time to transmit a packet from sender to receiver depends on the time to send a packet

over a single network link, the number of hops between sender and receiver and the saturation of

the network. Hence,

Tsend — Tsatdelay + DistaUCC X Tpacket

where,

Tpacket = time to send a packet over a single link,

Tsat delay = Delay due to network saturation for a single packet and

Distance = # of hops between sender and receiver.

The network can be considered as divided into slots of data packets. A packet can be sent

over the network only at the start of a packet slot. Since the time to process a packet at the

111

receiver is very small, it can be safely assumed that the processing time is equal to length of a

single packet slot and hence equal to the time to transmit a packet over a single link.

1 process A packet

The time to transmit an acknowledgement packet can be given as

Tack = Tsatjelay + (N - DistanCC) X Tpaeket-

Hence, the total cycle time can be written as

Tcycle = 2X Tsatdelay + (N + 1) X Tpaeket

If s is the saturation index of the network with value between 0 and 1, then the saturation

delay can be given as

Tsatdelay ~ 1 /2xs/(l-s)x Tpaeket-

If Tdeiay IS the delay introduced by each node in the network, then

1 packet ~ -T / K. + 1 delay-

Hence, the time for a complete cycle can be given as

Tcycle = (N + 1 + S/(1-S)) X Tpaeket.

To provide a basis for concrete discussion, we consider an example application with two

controllers and 6 phase legs. The controllers are switching at a frequency of 20KHz. As there are

2 controllers and 6 phase legs, the number of nodes, N in the network is 8. Let us assume that the

network saturation is 25% that is value of s is 0.25. As 8 data bits get transmitted as 10 bits due

to 4B/5B encoding by the transceivers, a packet of size 16 bytes will give a value of P as 160 bits.

If the network speed R is lOOMbytes per second, and the delay introduce by each node, Tdeiay is 3

nanoseconds, then the total cycle time will be around 15 microseconds.

Thus, it will be possible to perform 3 such cycles in a single switching period of 50

microseconds.

3.7 Comparisons between the dataflow approach, Matlab

Simulink, and Real-time Workshop package

Several commercial software packages have been developed to provide graphical control

software design and simulating environment. For example, Mathworks Simulink [xi] is a widely

used software package for modeling, simulating and analyzing dynamical systems; and Real-time

112

Workshop [xii] generates optimized, portable and customizable code from Simulink models,

which could run on many production targets. These two software packages together provide a

software platform for rapid prototyping process and automatic program building.

From software construction point of view, both approaches attempt to reduce engineering

effort by construct software from standard fimctional blocks in design libraries. Dataflow

architecture allows users to design software from fimctional self-contained library blocks at the C

code level. Simulink and Real-Time Workshop save software design effort by providing a

graphical modeling environment and automatic C code generation. Though dataflow approach

requires a dataflow graph description, which is handwritten so far, this software architecture has

the potential to incorporate a graphical design interface to fiirther reduce the software design

period and cost.

However, the two approaches differ dramatically at the constructed software. A real-time

kernel designed for dataflow architectural software provides abundant real-time control features

to meet requirements from different kinds of applications. These real-time control features range

from static single thread scheduling to preemptive multithread scheduling. The bare board

embedded C code generated from Simulink and Real-Time workshop supports only single tasking

or preemptive multitasking. Also because of the natures of infrastructures of the generated

software, the dataflow architectural software is easy to design for distributed control application,

while Simulink and Real-Time Workshop is more suitable for centralized control software

design.

3.7.1 Overview of Mathworks Simulink and Real-Time Workshop

Software

In recent years, MathWorks Simulink and Real-Time Workshop software packages have been

widely used in industry and academia for modeling and simulating dynamic systems and

generating C code for rapid prototyping or embedded control. Simulink is a software package for

modeling and simulating dynamic systems. It provides a graphical design envirorraient that

allows designers to build models as block diagrams. Real-Time Workshop generates optimized,

portable and customizable ANSI C code from Simulink models to create stand-alone

implementations of models that operate in real-time and non-real-time in a variety of target

environments. The relationships between Mathworks' MATLAB, Simulink and Real-Time

Workshop are shown in Fig. 3-38.

113

Early rapid prototyping iterations

Fig. 3-38 Relationships between Math Works MATLAB, Simulink and Real-time Workshop
software packages.

The overall software design procedure using Simulink and Real-Time Workshop package is

first draw block diagram based system model in Simuhnk, and then build target C code using

Real-Time Workshop. Simulink provides standard block libraries and a graphical design

environment. It supports hierarchical design, which means a block can be composed of several

sub blocks. It also allows users to create their customized library to simplify their specific design

procedure. The designed model can be simulated in Simulink to adjust system model structure or

model parameters. After several such iterations, when the simulation results match the design

specifications, the model can be translated into C code through Real-Time Workshop. Real-Time

Workshop allows users to choose from several code formats for different code running targets. To

generate C code that can be comphed for embedded systems. Embedded Coder format is applied

for the design example in this paper.

The overall software design procedure using Simuhnk and Real-Time Workshop package is

first draw block diagram based system model in Simulink, and then build target C code using

Real-Time Workshop. Simulink provides standard block libraries and a graphical design

envirorunent. It supports hierarchical design, which means a block can be composed of several

sub blocks. It also allows users to create their customized library to simplify their specific design

procedure. The designed model can be simulated in Simulink to adjust system model structure or

model parameters. After several such iterations, when the simulation results match the design

specifications, the model can be translated into C code through Real-Time Workshop. Real-Time

Workshop allows users to choose from several code formats for different code running targets. To

generate C code that can be compUed for embedded systems, Embedded Coder format is applied

for the design example in this paper.

114

To generate embedded C code, there are some constrains on model blocks. It requires that all

blocks in the model are either discrete time block or continuous time block but can be sampled at

discrete time. If multiple sample rates are used in a system, it requires that the lowest sample will

be chosen as the base rate and other higher sample must be multiple time of the base rate. The

purpose of these constraints is for the Embedded Coder to generate C code with some basic real-

time scheduling support.

The C code generated from Embedded Coder is in legacy main-program-and-subroutine

style, composed of a sample main program, an interrupt service routine (ISR) to implement the

control algorithm and data structure descriptions. The pseudo code of the main program and the

ISR, rt_OneStep (), is shown in Fig. 3-39. In the main program, after initialization, the DSP enters

an infinite loop to wait for interrupts. The interrupts occur at the base sample specified in the

Simulink model. And in the ISR, ModelStep is called to implement control in the current time

step. The structure of ModelStep is shown in Fig. 3-40, where MdlOutput computes the outputs

of a model, MdlUpdate updates model states, and MdlDerivatives computes derivates for model

states if necessary.

mainQ
{

Initialization (including installation of rt_OneStep as an interrupt service routine for a real-
time clock)

Initialize and start timer hardware
Enable interrupts
While(not Error)and (time <flnal time)

Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

}

(a) Pseudo main program.

rt_OneStepO
{

Check for interrupt overflow or other error
Enable "rt_OneStep"(timer)interrupt
ModelStep—Time step combines output, logging, update

>

(b) Pseudo ISR program.

Fig. 3-39 Pseudo code of Embedded Coder generated C program.

115

3.7.2 Comparison of Dataflow Approach and Simulink & Real-time

Workshop Package

A 3-phase voltage source inverter (VSI) with closed voltage loop is chosen as the design

example. The specifications of the 3-phase VSI are:

Input: Vdc = 200 V;

Outputs: balanced 3-phase sinusoidal with line-to-line voUage lOOV;

Switching frequency: fs = lOkHz;

Output inductance L = 300 uH at each phase;

Output capacitance C = 100 uF at each phase.

The voltage loop is design to have phase margin 35 degree and 10 dB gain margin.

[

start Exectition^j

MaiStart I

MdlOutput

MdlUpdate

MdlDerivatives

udioutput

MdlDerivatives

MdlTerminate 1
End

Fig. 3-40 ModelStep structure.

The dp transformation technology is used to simplify the close loop control design and SVM

technology is used to implement the modulator. The digital controller is assumed to run in an

Analog SHARC DSP (ADSP 21160). Analog Device also provides a software development

environment Visual DSPA^isual DSP ++, which support ANSI C.

3.7.2.1 Software design procedure

Fig. 3-7 shows the dataflow graph of the close loop control of the 3-phase VSI, while Fig.

3-41 shows its Simulink mode. From the high end user point of view, the two software

construction approaches have similarities. For the user of Simulink and Real-Time Workshop

116

package, the main task is using Simulink as a graphical interface to drag and pull blocks from

design libraries and then chooses a desired target for the Real-Time Workshop to compile into C

code. When using the dataflow approach, the designer only needs to provide a dataflow

description file to describe ECOs and their connections.

i
if

;Discrei«-TiTiie

tritegiMor

Ptf^mm
[—♦|_^_

-w»m-»B)f

-)H»H-"Wf

M tT
%

"titiBC' : i

•MM\

m .,«. ^i
TiLa66 '<

S
j&feqete

Jfarisfef'&qil

*jt«

■•fJW

^rn^rnvm
T^'jiw

Fig. 3-41 Simulink IVIodel of voltage close loop control of 3-phase inverter.

3.7.2.2 B. Code structure and performance analysis

Though there is a significant similarity in Fig. 3-7 and Fig. 3-41, both composed of ftinction

blocks and data connections, the generated code are in different structures because of different

block implementation methods and block connection mechanisms.

The generated code from Real-Time Workshop Embedded Coder [xiii] is in main-program-

and-subroutine style as presented in section HI. A block in a Simulink model has two tasks during

one time step: compute output and update states if necessary. In the generated C code, output

computation for individual blocks are combined into MdlOutput, while states updating for

individual blocks are combined into MdlUpdate. Inter-procedure calls are reduced in order to

optimize the generated code for real-time execution. The block execution sequences inside

MdlOutput and MdlUpdate are prescheduled. Arrows in Fig. 3-41 are translated into singular

storage units and used to decide the prescheduled block execution sequence.

117

Blocks in Fig. 3-41 are independent processes in dataflow software, while arrows are data

channels. Each process has its self-contained functionality. The execution sequence of processes

can be statically scheduled, or dynamically scheduled. In dynamically scheduling, Each ECO

process can be activated at its own sample rate and the activation depends on its input data

channels status. There is no constraint between sample rates of different ECO process. However,

context switching between ECO processes and maintaining data channels introduce run-time

performance overhead.

Fig. 3-42 shows the DSP execution cycles during one switching period for Embedded Coder

generated C code and dataflow software with different real-time kernel featiu-es. The code

efficiency of Embedded Coder generated C code is compared to that of dataflow C code with

mailbox data channels and static single thread scheduling. From Fig. 3-42, it can be seen that the

Embedded Coder generated C code actually takes more time on computation than any dataflow

counterparts. What the Embedded Coder optimized diuing its code generation is mainly reduced

inter-procedure calls.

Since the Embedded Coder generated C code is in main-program-and-subroutine style, it has

the drawbacks inherent in its software style. First, the generated code is naturally fit in centralized

control structure. Significant extra engineering effort will be involved to split the generated code

into distributed control system since the blocks in Simulink model are flattened. Second, there is

possibility that the generated code is not absolutely compatible with the target compiler, which

makes the software debug task tedious because the generated code contains MATLAB specific

definitions. Small changes in the generated code may cause the designer goes back to the

Simulink models.

For dataflow software, though it introduces run-time performance overhead, every ECO

process is independent, which makes the software easily run in distributed control system or

multi-processor system. The inter-process communications is carried through data chaimels,

which can be designed upon network communication protocols and transparent to applications.

The ECO processes allocation mechanisms have been designed and the ECO inter-processes

communication protocol is under design [xiv].

118

7000

6000

5000 H

4000

3000

2000

1000

0

<o
■o
m
X « o c
o
3
o << o

6090
5726 5507

5172

3415

liUJ
3043

Queue | Mailbox

Preemptive Multithread

Queue | l^^ailbox

Nonpreempfve
Multithread

1339
■869 712

Queue Mailbox

Dynamic Schedule
Single Thread

Queue | Mailbox

Static Schedule Single
Thread

Embedded
Coder

Generated

I Computation
I Context switching

■ Data chiannel
Q ECO sclieduiing

S Ready queue

Fig. 3-42. Code performance comparison.

3.8 Conclusion

By focusing on software architecture, we proposed dataflow approach to designing power

electronics control software that is built fi-om standardized modules, possesses a higher degree of

reusability, and supports greater reconfigurability. An appropriate architectural design for power

conversion system has been constructed, which is a key element of its long-term success. We

implemented quite number of control applications in dataflow architecture. We experimentally

assessed the context switching time of the selected micro-kernel. We also experimentally

measured the additional overhead imposed by the ECO-based dataflow style by comparing a

small collection of control algorithm implementations against existing baseline versions written

as traditional C programs. In order to adpat dataflow control software to distributed computation

enviromnent, we designed transparent messing protocols. Finally, we compared our approach to

other commercially software platforms.

119

4 HARDWARE MANAGER

4.1 Introduction
At the core of the research done on the PEBB concept are the ideas of reliability, flexibility,

and modularity. PEBB research is establishing power conversion systems that are distributed,

reliable, and flexible in nature. The Universal Controller is the keystone to these principles; the

remaining stones are the Hardvi^are Managers. The Hardware Manager board interfaces the

control loop to the power stage. On one side, the Hardware Manager coimects into the

information system via optical fibers arranged in single or dual ring structure. On the other side,

the Hardware Manager connects to the power stage through a phase leg, forming a basic PEBB.

The PEBBs are combined in several fashions to obtain a number of converter topologies (please

see Chapter 5 - Power Stage). The idea is not to concentrate on a specific topology or power

level, for the system is independent of such constraints (up to a limit). Thus we see the flexibility

and modularity of the PEBBs. The following chapters describe the design, operation, testing, and

the future research associated with the Hardware Manager.

During the past year of this project, a brand-new Hardware Manager board was designed,

manufactured, assembled, and tested. Fig. 4-1 shows a picture of the top and bottom views of

this board. The new Hardware Manager controls newly developed 33kW PEBB hard switched

phase legs, shown in Fig. 4-2. The new Hardware Manager now uses a Xilinx FPGA, has support

for a dual-ring communication protocol, buih-in protection mechanisms, as well as several

debugging features.

On a board level, the Hardware Manager was designed similarly to the PEBB. Every

functional part of the board, from communications to the sensors, is basically independent of each

other. The VHDL code in the Hardware Manager, just as in the Universal Controller, can be

instantiated individually, and thus making troubleshooting much easier.

The communications on the new Hardware Manager has been shown to be more reliable, and

is working just as expected. The operation of the sensors has also been verified. Some errors

were found with this new version of the Hardware Manager, but they have been easily

correctable, cosmetic mistakes. Overall the Hardware Manager board has been a big success,

considering the development and troubleshooting time, and its potential for the future.

120

Fig. 4-1 New Hardware Manager developed for the PnP PEBB-based power electronics

systems, a) top and b) bottom views.

121

Fig. 4-2 New PEBB module using the Hardware IVIanager.

122

Fig. 4-3 PCB Layout of the Hardware Manager

4.2 Design

The Hardware Manager board interfaces the phase legs to the information system, thus

making up the basic power electronics building block (PEBB). It is responsible for performing

control functions specific to the hardware used in implementing the power stage, but altogether

independent of converter topology. The Hardware Manager, phase legs, and the power stage

were designed according to the principles of PEBB, making the system modular and flexible.

Different topologies need only control code modifications, and possibly small configuration

changes in the power stage.

Several key ideas were kept in mind while designing the new Hardware Manager, such as

incorporating sensing and protection mechanisms, the ability to support a dual-ring

communication network, and modular design techniques. The Hardware Manager was designed

123

and built to be compatible with the previously buih PEBBs and the capabilities of the new

generation Universal Controllers. The new Hardware Manager thus includes voltage, current and

temperature sensors, dual optical transceiver circuitry, and the IPM driver-interface circuit. The

new Hardware Managers are backwards-compatible to the old phase-legs, but mainly designed to

take advantage of the capabilities of the new Universal Controller.

Central to the operation of the board is the Xilinx FPGA. This programmable logic chip

controls all aspects of the operation of the Hardware Manager, and was chosen because of its ease

of use, versatility, and size. The FPGA was programmed with modular VHDL code, which

administers every board function, from communication, to sensors, to the PWM signals going to

the IPM driver circuit. Because of its size (the number of gates), the FPGA can easily manage all

Hardware Manager functions while still operating fast enough to execute all necessary code in

one switching cycle. This means the speed of the FPGA was not a determining factor when

choosing the switching frequency. As more complex functions and protocols are implemented, it

may become a barrier. To solve this, the Hardware Manager may have to use a faster, larger

FPGA (please see Fig. 4-4), or use more efficient coding methods.

Device System Gates CLB Array Logic Cells
Maximum

Available I/O
Block RAM

Bits
Maximum

SelectRAM+™ Bits

XCV50 57,906 16x24 1,728 180 32,768 24,576

XCV100 108,904 20x30 2,700 180 40,960 38,400

XCV150 164,674 24x36 3,888 260 49,152 55,296

XCV200 236,666 28x42 5,292 284 57,344 75.264

XCV300 322,970 32x48 6,912 316 65,536 98,304

XCV400 468,262 40x60 10,800 404 81,920 153,600

XCV60Q 661,111 48x72 15,552 512 98,304 221,184

XCV800 888,439 56x84 21,168 512 114.688 301,056

XCV1000 1,124,022 64x96 27,648 512 131,072 393,216

Fig. 4-4 Virtex-series device comparison

The Hardware Manager participates in the system via dual (or single) optical fiber rings,

managed by the PESNet communication protocol. Handling communication are two Cypress

communication chips (CY7C9689A-AC) and high-speed optical transceiver circuits. This chip

has integrated transmitter and receiver circuits, and is a vast improvement over the

communication chips used in the previous Hardware Managers. The Cypress chip is much

smaller and thinner, which conserves board real estate, and dissipates heat more efficiently.

124

Besides being big and bulky, AMD TAXI chips used in the previous version became extremely

hot during normal use.

The Hardware Manager has advanced on-board LEM vohage and current sensors, on-board

temperature sensor, and a thermocouple input to directly measure the temperature of the IPM.

These sensor signals are tied to the FPGA via two analog-to-digital converters.

Powering the board are several compact, low profile dc/dc converters. The board uses a 5V

input, and then converts that into 5V, 2.5V, 3.3V, and +/- 15V levels. Furthermore, the board has

floating power supplies to drive the gate signals of the IPM (dual 15V, 3000V isolation power

suppUes).

Last, but not least, the board was outfitted with high-density connectors for the monitoring

and debugging of digital I/O signals, as well as to allow for future expansion: an additional sensor

board could be connected to the Hardware Manager, and more digital signals sent to the FPGA,

expanding its fiinction. The board also has 5 additional A/D channels, allowing more analog

signals to be linked to the FPGA.

Overall, the modularity of the PEBB concept has carried over into the design of the Hardware

Manager. The structure of the Hardware Manager is shown in Fig. 4-5 , where this can be clearly

seen. Since there are no shared data buses, each part is truly independent of the other functions of:

the board, linked together only at the FPGA.

Driver circuit Section —i

, FIlMcCi'iKin.nluilMf^

Fig. 4-5 Hardware Manager's modular structure

125

Section Functionality

FPGA Manages board other functions, executes control command.

Communication Dual-ring compatible, high-speed optical network.

Sensor Area Voltage, current, and temperature sensors provide

information for board monitoring, fault protection, and control

code execution.

Digital I/O Ease troubleshooting by allovring up to 63 digital signals to be

analyzed concurrently.

Driver Circuit Dual, 3000V-isolated floating power supplies. Includes switch

fault signal.

Hex Displays Important debugging and testing tool.

Fig. 4-6 Hardware Manager's sectioned functions

4.2.1 FPGA Design

The FPGA is at the center of the Hardware Manager, both physically and functionally. The

Hardware Manager was designed to be modular and sectioned. This modular approach translates

into easier troubleshooting, which leads to fast development times. Additionally, this approach

contributes to a very organized physical layout and VHDL code. All of the subsections of the

Hardware Manager directly interface to the FPGA: the communication chips have direct lines to

the FPGA's VO ports, as do the analog-to-digital converters and the expansion connectors.

The modularity of the VHDL code was very beneficial while troubleshooting. Each section

was implemented and tested individually, and the board was verified piece-by-piece. Testing

code sections individually narrows down the sources of any encountered problems. Moreover,

the debugging connectors can be mapped to virtually any digital signal from the FPGA. These

signals can then be seen using a Logic Analyzer.

The specific FPGA chosen was the Xilinx Virtex XCV300-4BG352. This is Virtex series,

2.5V chip, chosen for its compatibility to 5V logic signals. A newer, faster, and more economical

126

alternative would be to use the Virtex-E series; however, because of its incompatibility to 5V

signals, nearly all of the input lines would have to be buffered. While simple enough, due to the

number of signals between the communication chips and the FPGA, this became expensive in

terms of board space. Future revisions of the Hardware Manager may make use of this newer

FPGA.

While the FPGA offers a number of benefits, it does so with some difficulties. The

manufacturing and populating of the FPGA's BGA package is not a trivial task. The boards have

to be etched perfectly, and the vias aligned correctly in order for the component's solder bumps

not slide away from the contacts. This was a problem in one specific area of the FPGA where

some vias were too close to the pads. However, the solder ball stayed in its place and the signal

was preserved. Fig. 4-7, below, shows the detailed FPGA area layout. Problem area is shown in

Fig. 4-7. Future versions of the Hardware Manager will explore better manufacturing technology,

which will allow the use of smaller vias. This single adjustment should help enormously with the

mounting of the FPGA.

Fig. 4-7 Layout of the FPGA

127

Fig. 4-8 Areas of concern in mounting of tlie FPGA

4.2.2 Communications Circuitry Design

: The cdnimunicdtionis circuit design was a crucial portion of the Hardware Manager. The

concept of the PEBB relies on the abihty of the Hardware Managers to communicate with the

Universal Controller and with other Hardware Managers. Another reason the communication

circuitry needs to be robust is possible interference from high-power switching signals from the

IPM, which is located not too far from the digital circuitry of the Hardware Manager. Clearly,

without communication, the Hardware Manager would be rendered useless.

The Cypress commxmication chip was chosen for several reasons: integrated transmitter and

receiver, small TQFP package, and good thermal characteristics. The Cypress chip was a vast

improvement over the AMD TAXI chips used in the previous Hardware Managers, and offered

many more advanced options. Another reason for choosing the Cypress chip was its

compatibiUty to the old AMD chips via a simple adapter board (see below, TAXI2CYP).

However, the Cypress chips also caused some headaches, mostly due to the complexity of its

fiinctions.

The communications circuitry used in the Hardware Manager and Universal ConfroUer are

high-speed optical networks, which require well-built transceiver circuits. Trace thickness and

length become very important at these high frequencies, as well as placement of components.

Therefore, great care was used in designing this portion of the board, and the lessons learned from

128

the latest version of the Universal Controller were very useful. Still, a few problems were

encountered, especially relating to the Cypress transceiver chips. Several pins in the Cypress chip

take on different active states depending on the mode of operation. Failure to recognize this led

to several errors, which delayed launching of both the Universal Controller and the Hardware

Manager.

More problems were found with the termination circuit used to bias the differential signals:

IN+, JN-, OUT+, and OUT-. The magnitude and biasing of these signals are keys to the well

being of the communication between modules. Line termination resistors incorrectly biasing the

waveform caused initial failures with the receiver. The erroneous waveforms had smaller than

normal amplitudes, and as consequence, data was not recognized by the transceiver chip. After

the termination was corrected, and the bias adjusted, communication was estabUshed. The correct

termination biasing circuit is shown below, in Fig. 4-9 , for both receiver and transmitter:

rR3036
rR3031 <, 50

50

F1.INA+
FIDJA-

+5V

TR303!
82 '?

>'T(.3032
. 120

C3014
■.O.luF

Fig. 4-9 Termination Circuit for Differential Signals in both Receiver and Transmitter

Circuits

The complete receiver and transmitter circuit is shown in Fig. 4-10 and Fig. 4-11 ,

respectively. The layout of the communication section of the Hardware Manager is detailed in

Fig. 4-12.

129

sw

< 130

Fig. 4-10 Optical Receiver Circuit

r^svl

-tt

-I 1 ^T T 1

ttvl
"If" R3flfi3

AKWQCE
CATTKXC
WD

X

-i

Fig. 4-11 Optical Transmitter Circuit

130

Fig. 4-12 Layout of the communications circuitry

As mentioned above, the Cypress chip had an additional advantage in its ability to be easily

interfaced to the old, and discontinued, AMD TAXIchip AM7968 and AM7969 (receiver and

transmitter). Therefore, an interface board was created that effectively translated the Cypress

chip to a TAXIchip interface. The layout of this board, called TAXI2CYP, is shown below, in

Fig. 4-13.

131

Fig. 4-13 Composite Print of TAXI2CYP Board

4.2.3 Sensor Circuitry Design

The Hardware Manager was designed with on-board voltage, current, and temperature

sensors. The voltage and current sensors used are LEM LV-25P and LA-200, respectively. The

voltage and current sensor information is sent to an Analog Devices AD7869 analog-to-digital

converter, which in turn sends the 12-bit data to the FPGA.

The voltage and current sensors are accurate, top-of-the-line parts. Both sensors are closed-

loop Hall Effect sensors, with roughly 100-kHz bandwidth. Having accurate and reliable sensors

is very important, since the control algorithm acts on the values of voltage and current supplied

by these sensors. The voltage and current sensors are connected as shovwi in the schematic

diagrams below (Fig. 4-14 and Fig. 4-15).

132

J14006
<40k

R4007

401:

U4002

HT+ V+

VOUT

HT- V-

T

1 R4000
>300

Fig. 4-14 Voltage sensor schematic diagram

CC4004
O.OIU

»C4005
O.OIU

■< AD-A2 >

•ISV

+ 15VJ

1 1 V- VOUT

V+

2 AD-E2 ,
1
1 3
1 ■J>R4001

LA200-P %

;C4000
o.mu

^C4D01
O.OIU

< AD-B2 >

Fig. 4-15 Current sensor schematic diagram

The temperature sensor is a Maxim MAX6627 SPI-compatible device. This device uses the

temperature dependence of the resistance of a silicon device, such as an MMBT-3904 transistor,

to accurately measure on-board temperature (see schematic on Fig. 4-16). The purpose of this

sensor is to monitor the sensing circuitry. As shown above, the voltage sensor uses two 5W, 40-

ki2 resistors placed in series to measure the dc-bus voltage. At full rated power, these resistors

each will dissipate close to 4W of power. Should these resistors overheat, they may cause

damage to sensitive digital components. Therefore the monitoring of the on-board temperature

becomes an important safety mechanism, allowing the Hardware Manager to prevent damages

due to over-temperature.

133

AaSD

~C4flfilS CKT
d lu

.SVDD

cocp a >

Wfi4>ftifi17MKA.r

Fig. 4-16 Schematic diagram for the Temperature Sensor

4.3 Operation

The Hardware Manager was designed with the intent to operate in plug-and-play fashion,

whereas any PEBB module can take place of a faulted one, or operate in any region of a specific

topology. The Hardware Manager was built to be application independent, and can be used in

muhiple topologies. The only restriction is their individual power rating of 33kW, SOOVdc, and

50A nominal current. The Hardware Manager also offers protection and warning systems to go

along with system-level redundant safety measures.

Operation of the Hardware Manager is controlled by the Xilinx FPGA. The FPGA may be

programmed directly (via JTAG), or by the on-board PROM. The normal operation of the

Hardware Manager includes managing communication with other nodes, sensing temperature,

voltage, and current levels, and executing the corresponding control instruction sent by the

Universal Controller for that switching period. The Hardware Manager receives a specific

command fi-om the Universal Controller, executes it, and reports back its sensor values - it knows

nothing about the present topology, control algorithm, or power level, which are all handled in the

Universal Controller.

134

In our system, each hardware manager controls one half-bridge IPM module (Fig. 4-17).

The EPM module contains two switches (top and bottom) and their respective gate drivers. The

interface to the module is logical with a single ended power supply of 15 volts (see below). The

IPM module connects directly to the PCB and is isolated from the digital circuitry via opto-

couplers. The gate drive scheme provides short circuit protection (by means of the de-saturation

voltage circuit) and fault detection, with the fault signal 'f. In order to reduce the number of

supply voltage levels (and thus the number of dc-dc converters), Vdd and Vec were arranged in

floating point configuration.

Fig. 4-17 IPM Module

d

\h. >
gate

driver

1

 >

1

 •

 »

j.
^ <

booster

 •
•bptoisolators

Fig. 4-18 Dual Module IGBT Gate Drive Circuit

The normal operation of the Hardware Manager includes the execution of the control

algorithm sent by the Universal Controller: the controller sends a duty cycle, which is modulated,

and applied to the switches above. The information sent over the ring is tailored for that

individual Hardware Manager. The Hardware Manager, in turn, sends its sensor information

back to the Universal Controller, which computes the next duty cycle value. This is a simplified

version of the normal communication over the fiber ring; other information may be sent, as

135

necessary. The details can be found under the new PESNet communications protocol, PESNet

2.0.

The Hardware Manager boards have several fault protection and warning systems. The

VHDL code includes over-voltage, temperature, and over-current protection, as well as status

LEDs, which let the user know it is operating properly. These LEDs show the on-board dc/dc

converters are supplying the appropriate voltage level, as well as FPGA and IPM faults.

A worst-case power consumption analysis of the Hardware Manager yielded a value of about

15W. However, under normal usage, the board only requires about half of that figure. The

worst-case power consumption figure is so large mainly because of the FPGA, which does not

use all of its pins at one time. Based on this analysis, the input current to the Hardware Manager

is limited to 3A by a resettable dc fuse.

4.4 Testing

Testing of the new Hardware Manager has been very positive in all aspects, with no major

setbacks. Fig. 4-19 shows a picture of the new PEBB while running experimental tests. Errors

included easily correctable, non-threatening cosmetic mistakes, such as small footprint

inaccuracies. Board level tests have verified all components of the Hardware Manager. The

waveforms shown in Chapter 5 show the PWM signals sent to the switches. They represent the

midpoint of the IPM, and the control signals to the bottom and top switches. This small test

verifies the operation of the driver circuit and PWM generator.

The Hardware Manager was also tested in a single phase, dc/dc converter configuration,

connected in a loop with a Universal Controller (please see Fig. 4-20 and Fig. 4-21). The

resulting waveforms are shown in Chapter 6. This test enabled us to test the power stage (to low

power levels), and all functions of the Hardware Manager, including communication. The duty

cycle was sent from the Universal Controller via fiber. It was possible to change the duty cycle

on the fly, and watch the Hardware Manager's immediate reaction. The Universal Controller

received sensor information back from the Hardware Manager.

136

m

Fig. 4-19 New PEBB module mounted on the removable slide featuring the Hardware

Manager and main power connectors.

Fig. 4-20 Universal Controller in loop with one PEBB

137

Phase Leg

(Vdc j

^

1

Fig. 4-21 Single phase dc/dc converter configuration

Although this was a simple test, conducted at a fraction of the power capabilities of the

PEBB, the results were very encouraging. This test showed communication can be established on

the fiber link, and that the Universal Controller is able to send and receive data from the

Hardware Manager. A fiuther test was executed with two phase legs (one new and one old) in a

loop, in the following configuration:

Phase Leg A

t

(Vdc \ ,AAA-WV'

Phase Leg B

/TN

Fig. 4-22 Full bridge inverter configuration

138

4.5 Future Research

The diagram in Fig. 4-23 shows the structure of the PEBB system, and all of its interfaces.

Future research involving the Hardware Manager will concentrate on its interface with the switch

(iy). For current power levels, less than lOOkW, the interface between the Hardware Manager and

the phase leg has been defined and studied in this project. However, for higher power

applications where single devices may be larger than the board itself, the Hardware Manager

would not efficiently interface the PEBB. The structure of the current PEBB may need to be

changed in order to accommodate higher power appUcations - so that it can be ever more

flexible. Additionally, studies will concentrate on making the Hardware Manager independent on

the switch used. If this interface is characterized and standardized fi-om both sides, the device

used will no longer be directly related to the Hardware Manager, and vice-versa, as long as both

are compatible with the interface.

Changes that would make our PEBB more flexible include moving the high-frequency dc link

capacitor and sensors away from the Hardware Manager. They would be fitted instead into their

own separate intelligent modules (smart passives and smart sensors). These and other alterations

would open way to a highly-desirable, multi-megawatt PEBB.

Fig. 4-23. Interfaces of the Power Electronics Building Block (PEBB)

139

4.6 Conclusion

The concept of the Power Electronics Building Block rests in the ideas of reliability,

flexibility, and modularity. The PEBB allows design in power electronics to be done in a

standardized manner, instead of custom design jobs. This leads to faster development time, easier

troubleshooting, and lower costs. The Hardware Manager has been designed with all of these

ideas in mind, in the way to becoming a true PEBB. It has achieved reliabiUty through the use of

multiple on-board sensors and protection mechanisms (on top of system level protection),

topology and power level independence, and partitioned design, both physically and in software.

Future research on the Hardware Manager and the PEBB concept will strive to understand all of

its boundaries, and thus expanding the PEBB definition, and how it applies to the Hardware

Manager.

140

5 PEBB-BASED POWER STAGE

5.1 FEBB Partitioning Studies

Unlike modem digital technology, which utilizes an array of developed components or cells

to build a system, modem power systems lack a high degree of integration and standardization.

As a resuh, designers are often forced to build entire systems from scratch each time, which is

costly in engineering time as well as system reUability. In order to remedy this situation, the

concept of PEBB has been developed. These building blocks are integrated power modules

serving a fiinction, which is commonly found in a wide number of power systems. Depending on

the instmctions given to the controller, the PEBB can function as, for instance, a DC/DC

converter, an AC inverter, a synchronous rectifier, or a motor controller. In fact, it can do any of

these jobs interchangeably, depending only on the instmctions given to it. The goal of the PEBB

development is to create a power-processing component that moves most of the design away from

specific circuit topology consideration and power electronic switch and associated inductors,

capacitors, and other ancillary component selection, up to a systems level. As PEBB modules can

be connected together to form several power system topologies, greatly reduced design efforts as

well as increased system simplicity and reliability are achieved. In addition, maintenance cost is

reduced since individual modules are easily replaced and the number of stock spare parts is

reduced. PEBBs can be also the best choice to minimize both the layout and packaging parasitics,

because all the power semiconductor devices, control circuits, and the busbar will be integrated

together as a large power device.

To evaluate a fully functional PEBB two main fields must be investigated: identifying the

PEBB topology for constmction of the more standard converter topologies and the applicability

of distributed control to the muhi-cell topology, which includes the design of the communication

link and controller hardware required for cell control. In particular, one aspect still need

investigation is how to design, distribute and partition into PEBBs the hardware components

usually present in customized power converters.

5.2 Architecture of PEBB-Based Power Electronics Systems

A power electronics system is a set of power processing devices governed by a control

system that uses and produces the information about the operation of the power stage. Therefore,

141

that information-power characterization can be represented as a composition in a bi-dimensional

space. With the power switch in the origin of coordinates the two dimensions extend horizontally

and vertically as schematically shown in Fig. 5-1. With the information in the vertical dimension,

the different levels of control authority build upon the controlled power units. The power is

represented in the horizontal direction. Along that direction, the power components

(semiconductors, passives and auxiliaries) exchange power between them and the power system.

Previous works analyzed the PEBB in its information dimension and based on that proposed a

distributed control architecture [xv].

c
.2 1

il

System controller]

Local controller i

Hardware manager i

u J.
T I T >

1 Power System |

Energy

Fig. 5-1 General PEBB Architecture

The PEBB is build upon two composing structures: one is related to the power management

and is composed by the switching devices and the related passive and auxiliary components; the

other is the control that manages the proper operation of the power equipment. The control

structure basically process information related to the operation of the system while the power

components actually process the energy. Therefore these two "dimensions" of the PEBB: energy

and information can be arranged in a two-dimensional space as shown in Fig. 5-1. The vertical is

the information dimension and can be analyzed like an OSA information network producing a

layer characterization of the PEBB. In such layer classification, the power equipment belongs to

the bottom layer with the different control levels build upon it. On the other side, the energy

dimension characterizes that bottom layer and is horizontally represented in Fig. 5-1 along this

dimension, the power equipment: semiconductors, passives and auxiliaries exchange power

between them and the power system. The previous figure is only a conceptual representation of

the PEBB in its basic characteristics because it exist quite a difference between the ways the

power electronic systems handle the information and the energy. For example there is a

significantly high interaction between the power system components and a layer partition does

142

not exist along the energy dimension. Nevertheless, there are also some similarities that will be

shown in this work.

5.2.1 Functional analysis and characteristics of the information flow in

PEBB

The functional characterization of the PEBB control architecture has already been proposed,

Fig. 5-2 shows the PEBB figure of merit along the information dimension.

10»

102

(0
Z: 10
2

J^„ = 100 kHz

f^„ = 50 kHz I

f^„ = 20kHz|

X
•VSI Motor Drive
• Boost Rectifier
■ Three-Level VSI UPS 100 IHS

0 ins'

System
—Lcve!—

i Controller

0.1

Fig. 5-2 Information capacity at the different levels of control

Although the layers and interfaces are not clearly defined in the energy dimension, the system

characteristics in such dimension can be analyzed following a similar path as the one used for the

information. That analysis included a quantification of the information transmission capacity

(Mbit/sec). In the energetic characterization the quantification is related with the amount of

energy that the different components handle. This magnitude is not the power on the devices, nor

their losses because there is no interest in an efficiency evaluation here. In general, the

characterizing magnitude is the product of a voltage and a current. It can be a reactive power for

passive components, but in some cases, as the power semiconductors, is the product of two

magnitudes that are not present at the same time.

143

We can call the product of the V and I magnitudes used for the evaluation, the power

capacity, or power merit. The proposed evaluation method is better clarified using as example the

calculation of the power capacity at the different components in the PEBB. Power semiconductor

devices: its capacity is evaluated by the required V inverse capacity, which is VU, and the rms

value of the conducting current, Inns

P = VU X Inns

DC capacitor: it operates at the dc voltage level, Vdc, and is circulated in the permanent regime

by the ripple current. Therefore its power merit is:

P = Vdc X Icrms

AC inductor: it is circulated by the converter line current, and the current ripple creates a voltage

ripple at the inductor terminals.

P = Vlrms X Irms

AC capacitor: it operates at the line-line rms voltage, and although there can be a relatively large

AC current, our interest is in the ripple current created by the operation at the switching

frequency. Therefore

P = VU X Icrms

Auxiliary components: including protection devices, start or stop auxiliary circuits, etc. They are

not operative during at the permanent regime; so the average power is comparatively low. On the

other side, the power requirement during the operation is important. Therefore, it is necessary to

distinguish between the average and instantaneous requirements, but both are relevant for the

evaluation. Fig. 5-3shows the evaluation of the power capacity of the components of a phase leg

that has the following nominal characteristics (taken form PnP project):

rated power P=33kW

Dc link voltage Vdc=800V

switching frequency fsw=20kHz

Ac side main frequency fac=60Hz

line to line rms voltage level V11=480V

Ac rms current I1=120.3A

Ac peak currentIlpk= 170.1 A

144

* average pow er ■ - instant pow er

Fig. 5-3 The energy figure of merit (similar to something?, ha) The abscissa refers to: 1

semiconductor devices, 2 DC capacitor, 3 line inductor, 4 line capacitor, 5 other auxiliary

components

5.2.2 Physical boundaries of the PEBB

The useful concept of PEBB imposes some challenges on its technological implementation

enabling a widespread use in practice. One of those challenges is on finding the physical

boundaries of the PEBB. The calculation procedure of a PEBB involves the evaluation of the

electric requirements of the system components for all the possible applications. This evaluation

is necessary for dimensioning and selecting the semiconductor, passive, and auxiliary devices. In

that procedure, it is observed that while some applications impose a large requirement on a

component, another one may not even require the use of such a component. This shows the fact

that there exists some power capacity in the different components of the PEBB that is not fiilly

used through the different applications. We can evaluate such non-usable power capacity at a

particular component as the difference between the maximum and minimum capacity

requirement. Exemplifying, the semiconductor devices are usually required to be fully utilized in

all the applications while the AC inductors are not required for some of them. Moreover, we can

refer the mentioned unusable capacity to the maximum requirement, usually the value adopted for

construction, and express it as a percentage. This is shown in Fig. 5-4 (in magenta) as well as the

combination (in blue), by multiplication, of the power merit (in yellow) and the percentage of

145

unusable power. That blue line represents the amount of power capacity that is non-usable at the

different components of the PEBB.

70 / / 90

60 /
/

80

70
50

/ / 60

40 / / 50

30 / /
40

20
/ / 30

20 / .rf-***"*'^'^
10 /^/^ 10

^^^ - n

2 3 4 5 6

-'- " power available^— —%of use

Fig. 5-4 Calculation of the unusable power. Yellow: power merit at the different

components; magenta: percentage of non-usable capacity; blue: product of the previous

two magnitudes giving the non-usable power at the system components

The concept of the imusable power capacity can be employed to set (or at least to discuss

about) where the boundaries of the PEBB in the energy dimension must be. Cost considerations

prevent from having a lot of non-usable power on any power system. For the PEBB construction

this means that if a component non-usable capacity is large, it is probably worth to not include it

in the PEBB and add it only for those applications where it is required. Therefore, there is a hmit

for such unemployed power capacity. Components with an unusable power capacity below such

limit are probably to be included in the PEBB and the ones above the limit are to be considered as

auxiliary equipment added in case the appUcation requires them. The described idea is

represented in Fig. 5-5. The limit of imusable power capacity is arbitrary and chosen based on

technical-economical considerations. The proposed idea is consistent with existing practices of

power electronics module construction. For small power applications, the affordable un-usable

capacity is comparatively large (the relative position of the Umit line in the chart is high) and the

PEBB includes a lot of power components. For large power applications, the limit of unusable

146

capacity (placed relatively low in the chart) will leave out of the PEBB almost all devices, and in

such cases the PEBB includes only the power semiconductors.

70-| 1 /
60 < ► 4- / "

50 in PEBB out PEBB /

40
/

30

20

10
"

. /
^^ _____ 'iiD'tflfiin-_ _

usable capacity

1 2 3 4 5 6

Fig. 5-5 Non-usable power characteristic and PEBB boundary based on the limit of

affordable non-usable capacity

5.2.3 Control Characteristics of Power Electronics Systems

The information dimension in a power electronics converter is characterized mainly by the

functional and temporal requirements of the control system. The functional requirements are all

the control functions that the system needs to do in order to achieve its desired operation given its

configuration. On the other hand, the temporal requirements mainly address the relation amount

of information-time, measured in Mbit/sec, at the different parts of the control system given the

operation requirements like switching frequency and modulation.

The analysis of different control functions required in a power electronics system shows a set

of common functions at the low control authority level and an increased differentiation when

growing in authority level. This is general and vahd in the wide range of power conversion

systems. As an illustrative example a functional analysis of typical applications for utility systems

is shown in Table 5-l[xvi][xvii],[xviii].

On the other side, the evaluation of the information flow along the different control stages

shows a large capacity requirement close to the power conversion that becomes smaller when

moving away from the energy conversion components. The characteristics from this functional-

147

temporal point of view make the power electronic systems appropriate for implementation of

distributed control architecture. In [xix], such kind of architecture is proposed; it also has three

levels of authority: hardware manager, local controller and system controller. In a more general

sense, a power electronics system has different layers with different functions and characteristics.

A system buiU by combination of building blocks constitutes then a network of such blocks that

operates under a distributed control system with layering characteristics. Therefore, systems built

on PEBB can be matched with the OSI network standard; this new vision enhances the previously

proposed architecture.

5.2.4 PEBB Stage Characteristics

From the hardware point of view, the PEBB concept establishes that its composition includes

a set of components common to that PEBB range of applications, which is intended to be as wide

as possible. Therefore, in addition to the power-devices, the building block incorporates passives,

auxiliary components, and a set of low-level control functions common to many applications.

A review of medium and high power converter topologies shows two families of widely used

phase leg structures. One is the phase leg composed by two active switches with its respective

anti-parallel diode (scheme A in Fig. 5-6). It can be used in AC/DC, DC/AC, and DC/DC

converters, such as boost rectifier, two level and multi-level voltage source inverter (VSI), and

full/half bridge converter. The other commonly used phase leg consists of two active switches

with diodes in series with each of them (scheme B in Fig. 5-6); it can be configured as buck

rectifier or current source inverter. Other phase leg variants are shown in schemes C and D in Fig.

5-6. The proper operation of the discussed topologies requires the presence of voltage or current

source characteristics at the different switch terminals. Therefore, capacitors or inductors must be

connected at the proper terminals to complete the basic switching cell. Auxiliary elements like

overvoltage protections or connection switches may also be included.

The PEBB is completed with the inclusion of the components necessary to do a set of low-

level fimctions that include signal power amplification, level shift, isolation, protection and

diagnostic functions. These components are the gate drivers, transducers, A/D converters, and

optical and communication interfaces. A local controller (hardware manager) is then attached to

the power-switching cell to accomplish and supervise these functions. In the system being

developed these functions are handled by means of a FPGA that also handles the communication

to and fi-om higher-level control and other PEBBs. In this sense, the PEBB functions as a

computer-controlled power-switching unit or a power processor.

148

Table 5-1 Functional Analysis of some power electronics applications in utility systems

I U|'

^

A
T
C
O
M

-VAAA-r-

D
V
R

LKI-LWJ

c=i(=r

Ice limlter
r—Kh

5.2.4.IJ Application

- Load flow control

- Transient Stability

enhancement

- Power oscillation

damping

- Voltage support

- Reactive compensation

- Transient stability

enhancement

- Power oscillation

damping

- Sag mitigation

-Voltage regulation

- Energy storage

administration

- Connection by-pass

- Short circuit current

limitation

- Connection /

disconnection

Control

- Synchronization

- Voltage (or Z) control

- Firing angle

computation

- Synchronization

- Current Control

- Vdc control

- Duty cycle computation

- Synchronization

- Voltage control

- Current control

- Vdc control

- Duty cycle computation

- Synchronization

-1, dl/dt control

- Firing angle

computation

Conversion

- Switching control

(modulation control)

- Pulse gating

- Safe commutation
enabling (dv/dt, di/dt limit)

- Primary device

protection

- Power inagnitudes

sensing and

conditioning

149

B C

Fig. 5-6 PEBB Phase Leg Structures

D

^^I^I^JITF^J^^

'■■1 .'-^HHi /'JHH| /—

i>) to

■^ ^

of

ca

Fig. 5-7 Interfaces of the Power Electronics Building Block (PEBB)

5.3 PEBB-Based Power Stage Developed

The power stage of the integrated hardware/software PEBB system envisioned by the PnP

concept is shown in Fig. 5-7. The main goals sought by adding plug and play capacity to the

PEBB modules are to allow for easy reconfiguration providing great modularity, and improved

accessibility for service and maintenance. Among the desired features is hot swappable control

150

and communications for true PnP control software. This goal basically considers the spatial

distribution of the PEBB modules, as their placement within a constraint space will allow or not

to attain the easy reconfiguration. This basically calls for a mechanical design effort, which we

approached in the following way.

^ --■ 7x^P|rr-r

Power
Stage/ffjlj

-onn-

Vj j.

Blectric Power Svstcm

Universal
Controller
& Software

Control
Network

PEBB-Based
Power

Converters

l^/wS^i!'/'-

Fig. 5-8 Power stage subsystem of the Plug and Play demonstration system.

Fig. 5-8 shows the PnP System structure proposal, featuring a functional, temporal and spatial

distribution partitioning. The power stage itself encompasses all 3 dimensional distributions, the

spatial being perhaps the most complex given the direct interaction of all power components,

PEBB, busbars, contactors, protection devices, etc. In a conventional converter these elements are

fixed, but for the PnP approach, with distinctive separate elements it becomes significantly more

intricate to come up with a clean, modular solution. Think only in the complexities associated to

reconfigure the converter module as shown in the different topologies depicted in Fig. 5-9 . In

these topologies particularly we defined PEBBs as the common element within the voltage source

topologies under study. From observing the vast majority of high-power topologies these element

turned out to be a phase-leg, two IGBT connected in series forming a single-pole double-throw

switch. This basic building element solely considers the converter switching action, with whom

however all existent topologies may be built directly using the proposed PnP System

151

Architecture, the PNC 3-level is the only one that requires further development as its basic

switching element is now comprised of two PEBBs, which must operate under strict

synchronization to operate properly (PESNet).

The PEBB concept as such provides the means to simplify the power processor, switching

element interconnection, however the converter structure is composed as well by bus bars,

filtering elements, contactors and protection devices, dc-link bus with caps or batteries in UPS

systems, not to mention communication buses, low power distribution for control systems, and

cooling, forced air or any other depending on the power rating. Consequently, the converter still

remains a fairly structured system, and actual reconfiguration still demands more than simply

reordering some modular blocks.

Single-Ended

HT^C

7

I

I
7

I

7

I
Three-Phase

Half-Bridge

7

I

^

L

7

L

7

1

7

L
Multi-Phase

Full-Bridge

^

L

y

L

Multi-Level

Fig. 5-9 PEBB-based topologies for the Plug and Play power system.

152

ill ilEI iiii Ilii
PEBB
piiifci

. PEBB

PEBB
i M i M

PEBB

PEBB PEBB

PEBB PEBB
Tnt^ IIII IIII TflT

Inductors, harmonic filters, EMI filters
IIII : nil Iiii" m

Contactors, protection elements

DC-Link Caps, Ultra-Caps or Batteries
III! MM IIII IIII

n
Cooling)

Fig. 5-10 Power system schematic partitioning of the different components pertaining

to the Plug and Play physical structure system.

With this in mind we redesigned the converter cabinet structure so that it would have such an

organization that would allow taking the PEBB concept a step further, by identifying passive

PEBB modules within, as could be ac inductors with integrated protection, sensors, contactors, as

well as capacitors with the same features. This is shown in Fig. 5-10. What follows is a more

detailed presentation of the design of each of these components.

153

Fig. 5-11 The original fixed-ball bearing slides used to mount thie phase legs were later

replaced by removable single slides for ease of operation.

154

Fig. 5-12 Frontal view of cabinet.

5.3.1 Semiconductor Device Selection and Heat Sink Design

The electric characteristics of the applications for the phase-leg under investigation are as

follows:

rated power P=100kVA;

dc link voltage Vdc=800V;

switching frequency fsw=20kHz;

ac side main frequency fac=60Hz.

155

Assuming VU = 480V as line to line rms voltage level, the rms and peak values for the ac current

are:

ac rms current I1=120.3A;

ac peak current Ilpk=170.1A.

When a maximum peak-to-peak ripple of 25% with respect to ac peak current is considered, the

maximum current flowing through the power switch becomes:

ac max current Ilm=191.36A.

On the basis of the reported values, the selection of the power devices for the phase leg should be

carried out in the 1200V - 300AIGBT range. Three different options are here considered for the

IGBT module selection: dual module IGBT, dual intelUgent power module (EPM) IGBT, six-pack

intelligent power module (IPM) IGBT. The third option is to be accomplished by arranging in

parallel connection both the top switches and the bottom switches, this option has been

considered because the six-pack IPM IGBT is more commonly product than the dual IPM IGBT.

However, parallel coimection of IGBTs is critical concerning about static and dynamic current

balance among the paralleled devices; then further recommended current deratings of 15-20%

should be applied.

The dual module IGBT usually requires 2 optoisolators, 1 gate driver, 1 booster

configuration, and 2 isolated power supply voltage levels in order to drive each switch (Fig.

5-13). The gate driver can be either the hybrid gate driver suggested and produced by the same

company of the selected IGBT or a IGBT universal driver (MC33135). However, the MC33135

and similar components, desirable in order to design a more general purpose drive board, accept a

maximum voltage level equals to 20V thus allowing a negative voltage supply Vee=-5V (the

positive voltage supply must be set at Vdd=15V); whereas the manufacturing companies suggest

to provide Vee=-10V (-5V<Vee<-15V) in order to minimize turn-off switching energy. The gate

drive scheme accomplishes the short circuit protection (by means of the de-saturation voltage

circuit) and fault detection, providing the fault signal f In order to reduce the number of supply

voltage levels (and then the number of dc-dc converters), Vdd and Vee could be arranged in

floating point configuration.

156

d _^ •
\^ —>

f^—' gate
driver > •

booster

1
^V <—

1 •
•bptoisolators

Fig. 5-13 Dual Module IGBT Gate Drive Circuit

The gate drive circuit for each switch of an EPM configuration is shown in Fig. 5-14. In this case

neither external gate driver nor booster circuit are needed, as well only 1 power supply voltage

level (+15V) is required. IPMs have built-in protection circuits that prevent the power devices

from being damaged should the system malfunction or be overstressed.

CjAdJ^
d

N^ > T

fT—' P
r

J.
J\/ <

M

'bptoisolators

Fig. 5-14IPM IGBT Gate Drive Circuit

Fault detection and shut down schemes that allow maximum utilization of power device

capability without compromising reliabihty have been developed. Control supply under-voltage,

over-temperature, over-current, and short-circuit protection are all provided by the IPM's internal

gate control circuits. A fault output signal f is provided to alert the system controller if any of the

protection circuits are activated. The short-circuit protection uses actual current measurement to

detect dangerous conditions. This type of protection is faster and more reliable than conventional

de-saturation protection schemes.

On the basis of the previous descriptions and comments on IGBT modules and gate drive

configurations it seems to be reasonable the choice of the dual IPM IGBT for the application

157

under investigation. A research on power semiconductor devices throughout the web-sites of the

major companies put on evidence that only Powerex-Mitsubishi and Toshiba produce dual IPMs

in the 1200V - 300A range. Thus, the components PM300DVA120 (Powerex-Mitsubishi) and

MIG300Q101H (Toshiba) are considered in the following in order to design the cooling system.

5.3.2 Power Losses

The total power losses in the power semiconductors of a phase-leg are composed of

conduction and switching losses. Conduction losses are the losses due to the device's conduction

characteristics. The conduction losses are a function of the currents in each particular device and

that device's dc electrical characteristics. The switching losses are a function of the switching

frequency, the current in each device, and the device's dynamic characteristics.

The design of the phase-leg under investigation should be accomplished in order to allow the

building of several converter topologies (at the same power rating) and the adoption of different

modulation techniques. The switch and diode current, and thus the power losses, depend a great

deal on the modulation techniques used for the selected application [4]. For sake of generality,

continuous modulation (CM) techniques are preferred for the phase-leg power losses

determination as discontinuous modulation (DCM) techniques (as dc-bus clamping) provide a

reduction of the switching power losses (even if higher distortion concentrated in the tops of the

waves partially denies this advantage), whereas the conduction losses are almost the same of CM

techniques.

In the present report, data-sheets based methods for calculations of power losses are

considered; extensions of these methods can be used in case of multi-level power converter

configurations. When experimental testing and measuring system are available, extended models

based on extraction of parameters can be used.

5.3.2.1 Conduction Losses

In order to simplify the calculation of switch and diode currents, the ac phase current can be

assumed to be sinusoidal and the switching frequency is assumed sufficiently higher than the ac

fundamental frequency. Equations for the average and RMS switch and diode currents are derived

based on a quantitative analysis of the current waveforms. Conduction losses in the

semiconductor devices are then approximated using a piece-wise linear approximation of the

158

device's on-voltage characteristics. The typical IGBT voltage/current graph Vce/Ic is

approximated by the following linear equation:

P _ ^CEn -^CEO
^on-s j

where VCEn and ICn are the rated (manufacturers catalogue) current and the collector-to-emitter

voltage at the rated current, whereas VCEO is the threshold voltage. At the same way, the diode

forward voltage characteristic can be approximated by means of a linear law with the origin at the

threshold voltage VFO:

^CEn~^CEO

where VFn is the diode voltage drop at rated current.

The following equations define the conduction losses for phase-leg switches and diodes:

Pon-s = ^av-s " '^C£0 + ^on-s ' ^RMS-s

Pon-d = ^av-d ' ^FO + P^on-d ' ^RMS-d

where lav, IRMS and Ron are the average current, the RMS current and the conduction resistance

of respectively the switch (s) and the diode (d).

The phase current for 3-phase applications usually lags the phase voltage by the phase angle (p;

because the current is assumed a simple sine function, the math works out to be easier if we

define the voltage leading the current by <p and integrate over the current waveform. The ac phase

current, the duty cycles of the phase-leg top switch and bottom diode are defined according to the

following equations (under constant firequency conditions):

h=hpkSine

d,=--\i + Msin{e-^(p)]

da=\-d, = '^\\-Msin[9 + (p)]

159

where M is the modulation depth (represent the normalized voltage and is between 0 and 1) and 9

is the phase angle. At full modulation the duty cycle varies from 0 to 100%.

Assuming the switch current is fairly constant over one modulation cycle, the average current

over that cycle is the current times the duty cycle. The average switch current is calculated over

one half of the full sine wave and can then be found by integrating the current times the duty

cycle. The reason for averaging the switch current over one half of the period is found in the

estimating the device junction temperature rise. Li fact, for applications in which devices are

completely off (and then they don't produce power losses) for half a period, each device can be

approximated to be subjected to a long train of equal amplitude (half a period) load pulses; then,

the transient thermal impedance should be considered in order to calculate the device's over-

temperature over each half a period. Thus, the function ac phase current times the duty cycle is

integrated from 0 to Ji and then divided by n:

TV IK

thus resulting

^av-s - hpk
^1 Mcos^^

^K 4)

Similarly, for the diode it is found:

lav-d - hpk U 4 J

The RMS current is found by first squaring the current, then integrating and taking square

root of the resultant. The RMS value of a pulse waveform is found by squaring the amplitude and

integrating over the on time, therefore the duty cycle is not squared. The switch RMS current is

^RMS-s = j-]if-d, de =itpA-y\{m^e{\+Msm{d+(p%de
V ^ 0 F^ 0

and then

_ 11 2-Mcos(p
IRMS-S - hpk -\| 4 + ^^

In the same way, it is found for the diode:

160

^RMS-d - hpk
1 2-Mcos(p
4 ^Tt

The average and RMS values for the bottom switch and top diode are the same. The

equations for average and RMS currents are a function of (p; setting (p equal to 0 and M equal to 1

will maximize the switch current and minimize the diode current.

If sine modulation with the 3rd harmonic is considered, then it is foimd:

'cos^
^av-s ■'Ipk

(\ S-M ^

^av-d -^Ipk
yTt 6

J

COS(p \

^RMS-s -hpk^
'1

+ 2-M
30 cos ^-cos 3^

ASS-Tt

1 30 cos ^-cos 3^
iRMS-d-hpkj-^-'^-M-- ^^^_^

5.3.2.2 Switching Losses

Switching loss is the power dissipated during the turn-on and turn-off switching transitions.

In high frequency modulation, switching losses can be substantial and must be considered in

thermal design. The most accurate method of determining switching losses is to plot the IGBT

current and voltage waveforms during the transitions. Multiply the waveforms point by point to

get an instantaneous power waveform. The area under the power waveform is the switching

energy expressed in Joule/pulse. There are pulses of power loss at turn-on and turn-off of the

IGBT. The instantaneous jimction temperature rise due to these pulses is not normally a concern

because of their extremely short duration. However, the sum of these power losses in an

application where the device is repetitively switching on and off can be significant. In

applications where the phase current is changing in a sinusoidal fashion the IGBT current and

duty cycle are constantly changing making loss estimation quite difficult. Switching losses are

divided into IGBT and diode turn-on and turn-off loss. Switching losses in diodes are normally

lower than switching losses occurring in IGBTs, it is also known that the turn-on losses in diodes

161

are relatively small, therefore they are usually neglected [4, 14]. Assuming constant switching

frequency and constant voltage Vdc across the top switch collector and the bottom switch emitter,

the following equations can be used for initial loss estimation; however actual losses will depend

on temperature, sinusoidal output frequency, output current ripple and other factors.

Psw-s = {^on + Eoffj- fsw • — \h 'd^ = ~ \^on + ^^ff)■ hpk ' fsw
TT f\ TT

1 ^ 2

K Q n

where Eon and Eoff are respectively the IGBT turn-on and turn-off energy per pulse and per

Ampere (at the working Vdc), and Err is the diode reverse recovery energy per pulse and per

Ampere.

Should be information about devices' transient energy per pulse and per Ampere not

available on manufacturer's catalogue, the following expressions can be used instead of (15, 16):

■•sw-i ~ ' dc ' ^Ipk ' Jsw Kc-on "*" ''c-off I

"rr ~ T' 'dc ' ■'rr ' Jsw ' ^rr

where tc-on and tc-off are respectively the turn-on and turn-off IGBT crossover times, trr is the

diode reverse recovery time, and Irr is the diode peak recovery current. In any case

manufacturer's data taken at Tj=125°C should be used.

The total power losses per IGBT and per diode result respectively:

P =p +p ■' s on-s ' ^ sw-s

P =. P 4- P ^d ^on-d ~'■rr

By considering the data-sheet information shown in Tab. 1, the values shown in Tab. 2 (the

switch current is maximized and then cp is set to 0 and M to 1) are found for the components

PM300DVA120 (Powerex-Mitsubishi) and MIG300Q101H (Toshiba) [16, 17]. Unfortunately,

MIG300Q101H data-sheets are not exhaustive and most of the information are obtained by

interpolating curves from lower current EPM Toshiba components (MIG150Q101H and

162

MIG200Q101H); as a consequence, for this component power losses calculation (and then

cooling system design) is less accurate.

Table 5-2 IPM Components Data

VcEn
(V)

VCEO(V) Ic„(A) VF„
(V)

VFO(V) Eon
(mJ/pulse)

Eoff
(mJ/pulse)

E„
(mJ/pulse) tc.on(HS) tc-ofr(^s) ini\is) I.(A)

PM300DVA120 2.75 1.1 300 2 0.6 0.1 0.2 / 0.2 0.48 0.1 200

MIG300Q101H 2.7 1.1 300 2 0.7 / / / 0.39 0.3 0.12 200

Table 5-3 Power Losses

lav-s(A) lav-d (A) IRMS-S(A) iRMS-d (A) Ro„-s (mQ) Ron-d(nii2) P„„-s(W) P„„-d(W) Psw-S (W) Psw-S (W) P„(W)

PM300DVA120 96.7 11.65 115.66 33 5.5 4.67 180 12 650 590 80

MIG300Q101H 96.7 11.65 115.66 33 5.3 4.3 177 12.8 / 598 96

5.3.3 Cooling System Design

On the basis of the power losses calculated as shown in the previous paragraph the phase-leg

heat-sink can be designed. The design of the heat-sink for the present application is carried out by

considering the equivalent thermal circuit of Fig. 5-15. The junction temperature Tj should not be

higher than 125°C, whereas the ambient temperature value Ta depends on the adopted cooling

system. When forced air cooling is chosen the ambient temperature is set at 30°C, in case of

liquid cooled heat-sink Ta is equal to 15°C or even lower. Tc is the case temperature and for

IPMs it should not be higher than 100°C in order to avoid the disabling of the device for over-

temperature protection.

163

1
Rthi-jc

^^p. St

Tj-dt

1
Rtki-w

'T'dt

Tj-sb

X
Rths-ii

•si)

Tj-db

T
Rthd-i

Pdb

AT. J-c

Rih-ch AT, c-h

Th
^Tt

R^h-ha ATh-a

T.T
Fig. 5-15 Phase-Leg Equivalent Thermal Circuit

In Fig. 5-15 Pst=Ps, Pdb=Pd and Psb=Pdt=0 in the first half ac phase period, whereas Psb=Ps,

Pdt=Pd and Pst=Pdb=0 in the second half ac phase period. Assuming that the maximum over-

temperature is found on IGBTs and not on diodes, it resuhs [7]

AT
j-c 'Z^ths-jc '^'Z^ths-jc ~^ths-jc '^^ths-jc -P R^l

where Rths-jc is the steady-state thermal resistance (0.09°CAV for PM300DVA120, 0.078°CAV

for MIG300Q101H), R'ths-jc is the transient thermal impedance at l.STac - Tac is the ac phase

main period - (0.045°CAV for PM300DVA120, 0.03°CAV for MIG300Q101H), R"ths-jc is the

transient thermal impedance at Tac (0.036°CAV for PM300DVA120, 0.022°CAV for

MIG300Q101H) and R"'ths-jc is the transient thermal impedance at 0.5Tac (0.027°CAV for

PM300DVA120, 0.018°CAV for MIG300Q101H). The maximum values of the data sheet

thermal resistances have been considered.

From the equivalent thermal circuit of Fig. 5-15 and Table 5-3 values it is found:

(°CAV)
ATj-c (°C) ATc-h (°C) Rth-ha CCfW)

[air cooling]
Rth-ha °CAV)
[water cooling]

PM300DVA120 0.0585 45 25.9 0.028 0.045

MIG300Q101H 0.05 38.8 26.5 0.033 0.050

164

The forced air cooling system is designed in order to achieve Rth-ha = 0.03°CAV. The water

cooling system is designed in order to achieve Rth-ha = 0.04°CAV; then comparisons between the

two different cooling systems are provided focusing overall dimensions and costs.

5.3.3.1 Forced Air Cooling System

On the basis of the previously fixed specifications the following products were found for the

forced air cooling system:

Table 5-4 Forced Convection Heat-Sink

Manufacturer Part Number
Length
(mm)

Width
(mm)

Height
(mm)

Air-Flow Speed
(m/s)

Price
($)

AAVID [18] 4200 34 U 8 1000* 254 133.35 140 5.7

AAVID [18] 4200 34 U 8 1200 305 133.35 140 4.5

R-THETA
[19]

MFP305T13A36AS
049D

305 127 127 4.5

R-THETA
[19]

MFP254T13A36AS
049D*

254 127 127 5.7

R-THETA
[19]

MF203T13A58AS0
49DL

203 203 64 3.5

R-THETA
[19]

AF203T13A37AS0
91DL

203 206 104 3.5

PADA [20] LP6D 144/200** 200 144 134 6 62

PADA [20] LP6D 240/100** 100 240 134 6 64

WAKEFIELD
[21]

BE8556 10 U 9F 254 152 140 5.7

WAKEFIELD
[21]

BE8545 08 U 9F 203 203 140 3.5

(*) no standard product

(**) VAT included

As concern the fans to be used for supplying the cooling air flow, different options can be

chosen from product catalogues. In the following are shown some examples: centrifugal blowers

and axial fans seem to be the most suitable alternatives for the investigated application. The

centrifugal blower and the axial oval-shape fan are characterized by the highest air-flow speed

(the centrifugal blower has a small cross sectional area of the outflow air passage, whereas the

axial oval-shape fan has high output volumetric flow rate), and then they can be used to provide

165

air flow speed up to 6 m/s. However, the centrifugal blowers require, on their inflow side, enough

air volume and distance from other objects in order to achieve rated performance; whereas the

axial oval-shape fan has a cross sectional area which fits only the highest heat-sinks of Table 5-4.

The axial square-shape fans are manufactured in several sizes and then they can be easily

mounted on each heat-sink of Table 5-4; however, when the required air-flow speed is higher

than 5 m/s two fans must be used in either parallel or push-pull configuration depending on the

heat-sink overall dimensions.

Et3
OiMBISIOtJS - liwws fern)

RMtTNUMBER ABCD 6 fOH
OiGIM 6» 7.48 »JS 3.23 4.63 3.«* «.?? tM

<174HlM!!8«)f«S ("5! i'O") W CMJ

! JK LMNOPD
zm 1.W i.it a,M H4 ,88 9.M 6.80)?,78
p«) (50| m (m m tm mn <«)

A) G2G085-AB04-10 Centrifugal Blower ($ 140.70)

B) 5212NH Axial Square-Shape Fan ($ 68.20)

166

i

C) 6412M Axial Oval-Shape Fan ($ 116.20)

5.3.3.2 Water Cooling System
On the basis of the power losses calculation, the found value for the thermal resistance of the

liquid plate and the available product catalogues, the following specifications were established for

the water heat-sink:

Length 180 mm

Width 127 mm

Max Water Flow 5.7 1/min

The following product were found:

Table 5-5 Water Cooled Heat-Sink

Manufactur
er

Part Niunber
Length
(mm)

Width
(mm)

Tube OD
(mm)

Water Flow Rate
(1/min)

Price
($)

AAVID 418101U00000 178 197 9.5 1.5

AAVID 416501U00000 178 127 9.4 1.5

LYTRON CP10G14 152 89 9.5 1.5 65

WAKEFIE
LD

180-12-6C 152 197 9.5 2

WAKEFIE
LD

180-20-6C 152 140 9.5 2

R-THETA
AA180TB120D2C55
* 180 120 7.9 3

R-THETA
AA152TB152D4C55
* 152 152 7.9 3

PADA**
Superplate
127x15/180**

180 127 10 3 60

(*) valves included (**) VAT included

167

Either parallel or series connection of the phase-leg Hquid plates have been investigated. The

series connection allows an easier mechanical design but a lower cooling efficiency than the

parallel connection. In fact, the inlet water temperature of the last liquid plate to be cooled in a

series cormection is significantly higher than the temperature of the chiller outlet water; this

means that in order to cool enough the last liquid plate the other ones (particularly the first liquid

plate) are cooled in excess.

The parallel connection is a real flexible configuration and it allows us two options in the

selection of the chiller:

1 chiller for the whole cooling system (Lytron RC030, 543x705x787 mmS, $ 5,545.00)

1 chiller for each liquid plate (Lytron RC006, 318x483x559 mm3 each, $ 2,550.00each)

In the parallel connection the liquid plates should be provided with pipe connection elements and

valves in order to allow a flexible parallel connection configuration of more (3 - 4) hquid plates,

thus the layout of Fig. 5-16 is obtained.

Inlet Water

127 mm

180 mm

H i
Outlet Water
 >—

Pipe Connector
+ Valve

Fig. 5-16 Liquid Plates: Parallel Connection Configuration

5.3.3.3 Considerations on Cooling System Power Supply

Whichever forced air or water cooling system is chosen, power supply for fans and chiller

must be provided. Fans for air cooling system can be either dc (12-24-48 V) or single phase ac

(115-230 V) type; chillers for water cooler are supplied by single phase ac power net. In case of

dc voltage fed fans, a dc/dc converter can provide the power directly from the phase-leg dc link;

168

in this case, external electrical connections for the cooling system are not required. In addition,

chillers have usually power consumption higher than fans.

5.3.4 DC-Link Capacitors

In 3-phase power electronic converters the dc-link capacitor tank is sized in order to Umit the de-

link voltage ripple:

S-{\-M)-M-lLrms

where AVpp is the peak-to-peak dc-link voltage ripple, Ilrms is the rms value of the ac-phase

current, fs is the switching frequency, C is the total capacitance of the tank and M is the

M = Vu h IVdc
modulation index (defined as ^ ' , VUpk is the peak value of the line-to-line voltage

and Vdc is the dc-link voltage value).

However, the rms value of the ripple current in the dc-link capacitor must be also considered

during the design:

= IT^. -AM ^Crms ^Lrms '
1 2 r4 3 ,^^
—-i-cos^- M
n \7t 1 j

where Icrms is the ripple current in the capacitor tank and cos(p is the displacement power factor.

Eq. (1) and (2) reach their maximum value for M=0.5 and cos(p=l. For Vdc=800V, Ilrms=125A,

fs=20kHz, AVpp=l%Vdc it is found C=240uF, Icrms=81A.

Simulations in Saber have been carried on to verify the found theoretical values.

3-Phase PFC

169

Gr-iphO

azo:a.

800;0

I

TBO^a

0.01
 T

o;oi5 0^02

wcigviiagi

SIO^O

790.0

Fig. 5-17 DC-Link Voltage

6rapH0
VotitfV): t(s)

vo

I 1 1 r r r r 1,
6.01525 6.0155 0.61576 OMS 0.0'ie25 0.6l6fe 0;6i675 6-017

m

Fig. 5-18 DC-Linl< Voltage: zoom

170

20O:A

ipop

s o
!0'

0;0

^00*

(l^rs^Hb

1 r n 1 rr 1 r, r T jr
Xyiffi 0.631 OJOHi 0 033 6.bS4 OJ03S 0J03S tiXiSt Oiss OJ639

ioo:o

o

0.0

^000

Fig. 5-19 DC-Link Capacitor Current

6raph6

 T 1 ' 1
0^0355 0.036 itiMes (yXiSf

tcout(A^t(s)
pout

Fig. 5-20DC-Linl(Capacitor Current: zoom

171

erapho

1200:0

ij9o;o

■.3;

0.0

ilOO.0

MS: F MS: 118,1T r k k k kl

lcout(A): t<s)

\ ji n j T r r ri
0:0^59 £0.036 0i.O361 d.<^2 0.6363 0X>364 6.0365 0:036^

Fig. 5-21 DC-Link Capacitor Current: zoom

GratitiO

150.0

100.0

SM

■S0.0

.100.0

'150.0

:0:«54 0.0546 0.055 0.0555
m

O.0SE

lcdc(A):f(s)

^0505

Fig. 5-22 DC-Linl< Capacitor Current: zoom

172

;Gr«phD
;jc(fc(A}:t(s)

I:

■^mxij— ■IMIC

^gil.(l fllMS^ BS.1N

S pK pK p >, p \. ji s p V, .p-^ ! -n ^x/nn fri pN /"n f^ 1'" j/ r

1^

*•

M-i-
■

-*»'■ N N N y y y y \ pyyyyNy
-r— ... 1. ... i . ., ,1. , I-..

S.itS5 0.0SS1 •.0SS2 0.D5S3 S.0SS4 O.OSSS t^SG MSST :il.BSS8

Fig. 5-23 DC-Link Capacitor Current: zoom

5.3.5 DC-Link Bus Structure

As shown in Fig. 5-10, the first version of the dc-link bus structure employs busbars to

implement the positive and negative rails. This approach however has proven to be inadequate

and shall require significanat modifications in the fiiture. This work will be part of the recently

started new project. As shows Fig. 5-24, the back of the cabinet consists of a series of busbars

that transverse it longitudinally. The distributed structure though of the PEBBs increases

significantly the parasitic effects in the converter, hence parasitic inductances are high enough

that they effectively diminish the capacitance of the DC bus. This negative effect was reduced by

distributing the dc-link capacitors along the DC busbars, thus eliminating the actual capacitor

bank by placing the caps directly behind each PEBB connector.

In the fiiture however the parasitics problems not addressed before will be fiarthered and

studied. In fact it has already been determined that a planar structure where the positive and

negative busbars actually form a now parasitic capacitance should be the ideal approach and

solution. These busbars are closely positioned and properly isolated using Kapton. Future work is

required though to effectively design these new dc-link planes.

173

Fig. 5-24 PEBB, sliding rails, dc-link connectors and busbars of the cabinet under

construction.

174

5.3.6 AC Inductors and Capacitors

In three-phase power electronic converters the ac-phase inductor is sized in order to limit the

ac current ripple:

ML,,=^^-{\-M)-M
^■L-f,

where AIlpp is the peak-to-peak ac current ripple and L is the inductance value of the phase

inductor.

The ac-phase capacitor is sized in order to limit the ac-phase voltage ripple:

^VLPP=-
A/ Lpp

^' Js '^ac

where AVlpp is the ac-phase voltage ripple and Cac is the capacitance value of the phase

capacitor.

For AIlpp=20%Ilpk (34A) and AVlpp=^2%Vl (5.54V) it is found L=186uH, Cac=75uF

210.0

200.0

190.0

:<

18iJ.O

170.0

mtX)
I 1

0.616 0.01S25

Craphb

pelt^Y:|SESI]

iar.pfc

0;0165 0.01675 6.6lt
t(S)

 n 3
0.01^5 0.6175

Fig. 5-25 AC-Phase Current: zoom

175

GfaphD
la(ft):t(8)

(i_in»

2110^

mfbk ml^ '^pUk''
r^\ :^^\ r^

irtfli

'A / 1 / ^
jiUi.

\ / \ /

0oili

\/ \/

^oi.* w w
— :l , ... 1,, ...,l.,., :,:l.:.. ...Vl,.... ,:l. .■>,.-

:IUI35 t.04 B.64S 0.0^ O.OSS 0.1)6 0.e6$:0J>7

Fig. 5-26 AC-Phase Current

GraphO

200.0 -g

1S0.O

100.0

170.0

itO.O<

i$o:o

Fig. 5-27 AC-Phase Current: zoom

176

^i>i>>iO

2tlMt

;i t-O

;:2iHi.a

2SS.0

g axi

mf>.t

Fig. 5-28 Load-Phase Current (top) and Voltage (bottom)

GraphO
m-.Ms)

Jica

15.0 ULJI jiykdi i^dyl
Ma IIHL JHH^^ JHH

«.«r ^^^■My^^^^Hui^^^^H
1 m: H^Hj^Hj^Hj^HH

-S^.' Pn^^^^^^r^^^^^^^V
;io.« ^H^ ^M'
-«.e WTW W^rlf 1
-20 0-

~. ■■#■■]
 —T" ;T ■ ,1 ./I-,. .•■I-,-' ..': :■■■!,.■ 1

O.OGS 0.07 !0.07S 0.08 m B.fl85 0.09 0.095 0.1

Fig. 5-29 AC-Pliase Capacitor Current

177

Fig. 5-30 Closeup view of the AC inductors positioned beneatli the fans in the

cabinet.

5.3.6.1 Inductor Design

Design input parameters:

inductance value L;

rated peak current (ILpk) and rated rms current (ILrms);

operating frequency (fs);

In order to carry on the design of the inductor the following expressions are considered:

'e~-^e''e~
Mo^-^hpk

B pk

178

N^.^'^'^P^
"^e'^pk

A-u, — '■w

'^cu ' "^ Lrms ' ^e ' "pk

where Ve, Ae, le and |a,0|X are respectively the volume, the cross section, the path length and the

magnetic permeability of the material in which the magnetic energy is stored; Bpk is the peak

flux density in the core; Aw, N, kcu and JLrms are respectively the required winding area, the

number of turns, the fill factor and the current density considered for the inductor winding.

The core material is chosen on the basis of the operating frequency; thus, the value of Bpk

and the magnetic permeabiUty are found from data-sheet of the selected material. The core size

closest to the resuU is chosen among the options available on the market; then, by using the

previous equations the actual values of Bpk, N, L and Aw are known. For the current design

Metglass material is chosen and the following values are used in the previous equations:

L=185uH, ILrms=125A, JLrms=4A/mm2, Bpk=1.2T, kcu=0.5

Selecting the core AMCC-400 it is found:

Ae=l 1.7cm2, le=5.4mm, N=26, L=184uH, Aw=16cm2

The required copper foil section is

Scu=62.5mmx0.5mm.

5.3.6.2 Selected Capacitors

dc-link capacitor for each phase-leg: electronic concepts UL31BL356K, 1000V-35uF;

additional dc-link capacitor: electronic concepts UL30BL0085, 1000V-85uF;

ac-phase capacitor: electronic concepts 5MPA2606J, 530VAC-60uF;

179

■mt^im

I oi

Hi

\r

K h

H

IA

r M

IA lA

V M
h V] IA

r
I

r
u

r
k

IrJ [r

sjsei ojKitii 6:oG62 o.oee29 ooess omns oJies4 6:<i««9 bidess 6.Ke» «.(>e<s 6.i>is6s O,O«ST i>M6t9 bjiesti olobess oMra

Fig. 5-31 AC capacitors view inside tlie cabinet. These are directly positioned and

connected to the output terminals of the AC inductors.

180

5.3.7 Contactors, fuses, and power connectors

The contactors and fuses were placed according to the scheme shown in Fig. 5-32, a view of

the final mounting in the cabinet is shown in Fig. 5-33. The high power connectors were placed

as shown in Fig. 5-34.

-HJ I C-l I

n^
F-C[]

Phase-Leg 1 Phase-Leg 2

I
Phase-Leg 8

Cl| I C2I I C8|

Fig. 5-32 Contactors and fuses scheme for the experimental prototype.

F8l

181

Fig. 5-33 Closeup view of the contactors, fuses and control power connectors.

Fig. 5-34 View of the power terminal blocks at the bottom of the cabinet structure.

182

5.3.8 Investigation on Soft-Switching Circuit Topology

It is well known that the zero-current-transition (ZCT) technique is attractive in high-power

inverters and power-factor-correction (PFC) rectifiers, where the minority-carrier devices, such as

IGBTs, are the power switches. The basic concept of ZCT technique is to force the current of an

outgoing device in PWM converters to zero prior to turning off the device. By using the ZCT

technique, converters can achieve a higher switching frequency with reduced switching losses

and less electro-magnetic-interference (EMI).

Generally the ZCT commutation is realized through the oscillatory action of an LC circuit,

which is triggered by an auxiliary switch. In power electronics building block (PEBB) phase-leg

configuration, it is preferred to assist each main switch independently so that any PWM schemes

for the hard-switching counterparts can be directly employed without modification and it is also

easy to assemble more PEBB phase-legs in order to arrange several converter topologies.

Using the same ZCT concept, a variety of circuit configurations and control schemes can result in

different operational behaviors and soft-switching features. Fig. 1 shows one ZCT PEBB phase-

leg, which consists of two main switches (SI and S2), two auxiliary switches (Six and S2x) and

one LC resonant tank. Based on the same circuit configuration, a number of ZCT control schemes

have been developed for modem gate-controlled devices, such as the IGBTs. These include the

following: the ZCT scheme which achieves zero-current turn-off for the main switches [xx]; the

improved scheme which also provides soft commutation for the main diodes and the auxiliary

switches [xxi]; and the further improved scheme which achieves near-zero-voltage turn-on for the

main switches [xxii]. The last introduced scheme (ZCT-NZVT) seems to the most promising one

from the point of view of the resonant capacitor voltage stress, the auxiliary switch stress

distribution, the peak value of both the current in the main switch and the current circulating in

the auxiliary switch and also from the point of view of the circulating energy in the resonant tank

[xxiii].

SsxY^DiK \SDI

Lx ^K

Six\~iDi3j N^JD.

jrT\'_Q

183

Fig. 5-35 Soft switching PEBB schematic

Further, two attributes can be identified in the circuit shown in Fig. 5-35. First, soft transitions for

each phase-leg are executed independently. Hence, any PWM scheme developed for hard-

switching converters is still applicable, and the ZCT implementation does not compromise any

well-proven control techniques. Second, voltage stresses across all devices are kept to the level of

dc bus voltage because no additional devices or components are inserted in the main power path.

In the following the design steps for both ZCY-NZVT and IZCT techniques are resumed on

the basis of the normalized approach. The normaUzation factors are the PEBB maximum dc link

voltage Vdcm and the maximum current Ilm subjected to the ZCT turn-off; thus the normalized

expressions are:

y 7 Im

•'in ~ hlhm ■ "den ~ ''dci'dcm ■ '^a dcm

where ZO is the resonant tank impedance.

Some design expressions are common to all the ZCT techniques, thus can be provided before the

analysis of each technique:

7i=2^VVQ (1)

■^0 —■\l^x/^x (2)

4 = Zo-To
In

Cx =
4

^xpkn = ^-/.„

T — k
^xpkoffn ~%# 4

(3)

(4)

(5)

(6)

where Lx and Cx are the passive elements of the resonant tank, and Ixpkn and Ixpkoffn are the

normalized values of respectively the peak resonant current and the peak resonant current during

the main switch turning off.

184

5.3.8.1 ZCT-NZVTPEBB

ZOlLLKn

ZOnLcpkof&i

Fig. 5-36 State-Plane Trajectory

5.3.8.1.1 Design rule

Determining ZOn

From the state-plane trajectory it can be seen that

\V (t\
xpkoffn

-'On

where Vcxn is the normalized value of the resonant capacitor voltage.

Assuming as first rough calculation that

(7)

185

and knowing that

we have

Using (6) and (7) it is found

V 1 7 _ 'den , ^

-'in ^^l^off (9)

/t >1
It must be verified that °^ in order to achieve a total ZCT turn-off; thus at maximum dc Unk

vohage Vdcm and maximum current Ihn condition ZCT turn-off is accomplished when

Zo„<0.33

As ZOn is selected, the value of koff, and then Ixpkoffn, can be found from (9) for every current

and vohage operating condition. Also, the values of both resonant capacitor peak voltage

(Vcxpkn) and resonant peak current (Ixpkn) can be found for each operating condition:

V =V +7 I '^ cxpkn "dcn^^On "'in HQ)

J _ ^exnV'O/ _ '^dcn J
xpkn rj y In

^0« ^Or, . (11)

Using (5), (9) and (11) the value of k is easily found

^ = ^o#+l (12)

The maximum normalized value of the peak current that flows through each power devices is

respectively:

hpkn ~ hn . ^Dpkn ~ ■'in ' U + ^J . ^SXpkn ~ ^ ' •'In . ^DXpkn ~ "'in

From the state-plane trajectory it is possible to get a more accurate calculation of the Vcxn(t5)

value. However, the resulting expression is more difficult to manage than (8). In the following is

shown the detailed calculation:

v.M=VcM-^v^Xu-x)

186

In the period " ■* ^ the Vdc voUage is included in the resonant path and as resuh the

resonant current decreases rapidly toward zero; thus we can assume, with a good approximation,

that the capacitor Cx is charged by means the current Ix linearly decreasing from II to zero. The

following expressions can be written:

^x "-'/ _ ^x '"cxV'\-i) I T/ .T.\f

By rearranging the above written equations, the variation of the resonant capacitor normalized

voltage level during the period At4-3 results:

li

Finally it is found an accurate expression for Vcxn(t5):

5.3.8.1.2 Choosing TO

From the state-plane trajectory, in case of Ilm and Vdcm, can be assumed

TV =2VVC; •cos-'(l/A:„^) = §-cos-'(l/^,^)

where the choice of Toff is device dependent, and it should be longer than the current fall time of

the main switch.

5.3.8.1.3 Calculation ofLx and Cx

187

The values of Lx and Cx can be determined by means of respectively (3) and (4)

5.3.8.1.4 Timing of auxiliary switch gating signal

Assuming that the main leg active components are SI and D2, the switch SIX is gated to achieve

tuming-on of the main switch S1 whereas S2X provides the tuming-off of S1.

The leading time of gating SIX with respect to S1 can be set as

T — 0 's,x - 2 1, 2kJ

pw =T
The pulse width of SIX gate signal is ■^'^ '^'^ in order to have SIX turn-off and SI turn-

on at the same time.

The leading time of gating S2X with respect to S1 turn-off signal can be chosen as

T
T =-2--/ ^S2X . ■'in

whereas the pulse width of S2X gate is pointed out as

In the previous expression

AT=^.[v^.-vM]

where

AT =t -t =C —

188

5.3.8.2 IZCTPEBB

ZOiuDn

ZOnxKit

Fig. 5-37 State-Plane Trajectory

5.3.8.2.1 Design rule

Determining ZOn

From the state-plane trajectory it can be seen that

V -IF (t \ j _ 'den rcx»V5^
xpkoffn

-'OB

with

In the period "^ "" 3 i t^e Vdc voltage is included in the resonant path and as result the

resonant current decreases rapidly toward zero; thus we can assume, with a good approximation,

that the capacitor Cx is charged by means the current Ix Hnearly decreasing from II to zero. The

following expressions can be written:

^.(^3)
_I,M

~ 2C

2 2 dc ! ^

By rearranging the above written equations, the resonant capacitor normalized voltage level at t3

results:

189

From the previous equations it is found that:

K —A—J£S-— \ ' den I 1

^On -'in V ^On "'in

and in a more promptly form

^<,#=3-^,,-V4-4+l

where

7 •/ ^On •'in

is the ratio between Ixpkoffn and Iln when Vcxn(t5)=0.

k >1
The value of ZOn is determined by means of (16) and (17) in order to achieve °^ , thus

providing a total ZCT turn-off

As ZOn is selected, the value of koff, and then Ixpkoffn, can be found from (16) for every current

and voltage operating condition. Also, the values of the resonant capacitor peak voltage (Vcxpkn)

can be found for each operating condition:

V =V +7 T ' cxpkn ' den ^ ^On ^ xpkoffn

which, rearranged leads to the expression

''^expkn ~ ^ ' *^den V^ " '^dcn + ■^Qn ' -'in

The maximum normalized value of the peak current that flows through each power devices is

respectively:

hpkn - -^In ■ U + ^<#/. ^Dpkr, = ^ • /[„ ^SXpkn = '^off ' -'in . ^DXpkn - Kff ' ■'in

5.3.8.2.2 Choosing TO

From the state-plane trajectory, in case of Ilm and Vdcm, can be assumed

190

Toff = 2VVC:-cos-'(l/*„^)=^-cos-'(l/^„^)

where the choice of Toff is device dependent, and it should be longer than the current fall time of

the main switch.

5.3.8.2.3 Calculation ofLx and Cx

The values of Lx and Cx can be determined by means of respectively (3) and (4)

5.3.8.2.4 Timing of auxiliary switch gating signal

Assuming that the main leg active components are SI and D2, the switch SIX is gated to achieve

both tuming-on and tuming-off of the main switch SI.

The leading time of gating S1X with respect to S1 can be set as

T
T — 0

where koffm is the value that koff assumes when Vdc=Vdcm and Il=Ilm.

PW =T
The pulse width of SIX gate on-signal is ■s'^"" ■^'^''" in order to have SIX turn-off and SI

turn-on at the same time.

The leading time of gating SIX with respect to S1 turn-off signal can be chosen as

T =7" ^SlXoff ^SlXon

whereas the pulse width of SIX gate off-signal is pointed out as

PW =T
^'"SlXoff ^SlXoff

5.3.8.3 Numerical Example of Resonant Circuit Design for a lOOkW PEBB Phase-

Leg

Vdcm=800V;

191

Ilm=191A (pk value at switching frequency, assuming as current ripple 25% of the rated phase

current).

ZCT-NZVT

Z0n=0.31, Z0=1.3Q

Lx=0.725uH; Cx=0.43uF

Toff=800ns, T0=3.5ns

At rated operating condition:

kof^l.225, k=2.225,

Ixpkofif=234A, Ixpk=425A,

ISpk=191A IDpk=616A

Timing:

Vcxpk=1048V,

ISXpk=425A IDXpk=191A

P^six = Tsix = 2.143M5 Ts2x = 0.875M5 PWs2^=3Jl4us

Atnn=3/4(143.25A)

koff=2.3, k=3.3,

Ixpkoff=329.5A, Ixpk=472.7A, Vcxpk=986V,

ISpk=143.25A IDpk=616A ISXpk=472.7A IDXpk=143.25A

Timing:

PWs,x=T,,^=2m5us Ts2X = 0.875M5 PW,,^=Aus

Atnn=l/2(95.5A)

koffM.45,

Ixpkoff=425A,

ISpk=95.5A

Timing:

k=5.45,

Ixpk=529.5A,

IDpk=616A

Vcxpk=924V,

ISXpk=529.5A IDXpk=95.5A

PWs,x=Ts^x='^-^^^s Tsix = O.SlSus PWs2x = 4.36M5

Atnn=l/4(47.75A)

koff=10.9,

Ixpkoff=520.5A,

ISpk=47.75A

Timing:

k=11.9,

Ixpk=568.2A, Vcxpk=862V,

IDpk=616A ISXpk=568.2A IDXpk=47.75A

192

> >

Atlln=5/4(238.75A)

koflN(0.58) 1, k=1.58,

Ixpkoff=238.75A Ixpk=377.2A, Vcxpk=1110V,

ISpk=238.75A IDpk=616A ISXpk=377.2A IDXpk=238.75A

Timing:

^^six = Tiix = 2.304M5 Ts2x=0.S75us PRP^^JA-= 3-25M5

IZCT

Z0n=0.715, Z0=3n

Lx=1.672uH; Cx=0.186uF

TofiN800ns, T0=3.5ns

At rated operating condition:

koff=1.225, kid=1.4,

Ixpkoff=234A, Vcxpk=1501V,

ISpk=425A IDpk=382A ISXpk=234A IDXpk=234A

Timing:

P^SlXon - '^SlXon ~ ^"SXXoff ~ ^SXXoff ~ 2.025US

At Iln=3/4 (143.25A)

koff^l.733, kid=1.865,

Ixpkoff=248.25A, Vcxpk=l 543.5V,

ISpk=391.5A IDpk=286.5A ISXpk=248.25A
IDXpk=248.25A

Timing:

PWs^Xon = Tsxxon = PWsxXoff = TsxXoff = 2.678t/5

At nn=l/2 (95.5A)

koff=2.71, kid=2.8,

Ixpkoff=258.8A, Vcxpk=1575V,

ISpk=354.3A IDpk=191A ISXpk=258.8A IDXpk=258.8A

193

Timing:

^^5.xo« = Ts,xo. = PWs^xoff = Ts^xoff = 2.718W5

Atlln=l/4(47.75A)

koff^5.55,

Ixpkoff=265A,

ISpk=312.7A

Timing:

kid=5.6,

Vcxpk=1593.6V,

IDpk=85A ISXpk=265A IDXpk=265A

P^SiXon - '^SlXon " P^S\Xoff - ^^SXXoff " 2.741M5

At nn=5/4 (238.75A)

koff=(0.906) 1

Ixpkoff=238.75

ISpk=404.7A

Timing:

kid=1.119,

Vcxpk=1515V,

IDpk=477.5 ISXpk=238.75 IDXpk=238.75

P^SXXon - ^SlXon — ''"SXXojf ~ ^SXXoff 2.643M5

Table 5-6 Theoretical calculation results and simulation results (between parenthesis)

ZCT-NZVT IZCT

Main
current [A]

Main
switch

current [A]

Main diode
current [A]

Auxiliary
switch

current [A]

Auxiliary
diode

current [A]

Main
switch

current [A]

Main diode
current [A]

Auxiliary
switch

current [A]

Auxiliary
diode

current [A]

191 191

(191)

616

(621)

. 425

(430)

191

(191)

425

(414)

382

(360)

234

(223)

234

(197)

143.25 143.25

(143.25)

616

(602)

472.7

(458)

143.25

(143.25)

391.5

(370)

286.5

(270)

248.25

(227)

248.25

(200)

95.5 95.5

(95.5)

616

(582)

529.5

(486)

95.5

(95.5)

354.3

(329)

191

(179)

258.8

(233)

258.8

(206)

47.25 47.25

(47.25)

616

(564)

568.2

(516)

47.25

(47.25)

312.7

(292)

95.5

(89)

265

(244)

265

(216)

238.75 238.75

(238.75)

616

(642)

377.2

(403)

238.75

(238.25)

477.5

(442)

477.5

(450)

238.75

(211)

238.75

(238.75)

194

5.3.8.4 Numerical and Simulation Results (Pspice PEBB phase leg models)

5.3.8.4.1 ZCT-NZVT (rated conditions of operation)

Resonant inductor current and resonant capacitor voltage

i ?

Fig. 5-38 Main leg currents

195

S i

Fig. 5-39 Auxiliary leg currents

196

!Si I 1 s : i i i 1
Is]

y....
_f i

* ;

lil
* i

ill

si
|1

t

i , .

- S; . —c? — ""^

a!

~ ^^—

si

ii , . . ^

Fig. 5-40 IZCT (rated conditions of operation)

197

5.3.8.4.2 Resonant inductor current and resonant capacitor voltage

Fig. 5-41 Main leg currents

198

Fig. 5-42 Auxiliary leg currents

199

sg

Fig. 5-43 ZCT-NZVT (rated conditions of operation)

5.3.8.5 Comparison Between the ZCT-NZVT and the IZCT Techniques

On the basis of the normalized approach, IZCT and ZCT-NZVT resonant circuit designs can

be compared.

200

Resonant capacitance value:

lower in IZCT topology than in ZCT-NZVT one, thus the total resonant capacitance can be
mainly affected by parasitic elements in IZCT scheme.

Resonant capacitor peak voltage level:

close to 2 times the dc link voltage for IZCT technique, 1.3-1.4 times the dc link voltage for ZCT-
NZVT technique.

Resonant inductance value:

lower in ZCT-NZVT topology than in IZCT one, thus the total resonant inductance can be mainly
affected by parasitic elements in ZCT-NZVT scheme.

Resonant inductor peak current level:

2.3-2.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 1.3-1.4
times the maximum current subjected to ZCT for IZCT topology.

Main switch peak current:

2.3-2.4 times the maximum current subjected to ZCT turn-off for IZCT scheme, equal to the
maximum current subjected to ZCT for ZCT-NZVT configuration.

Main diode peak current:

3.3-3.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 2 times
the maximum current subjected to ZCT for IZCT topology.

Auxiliary switch peak current:

2.3-2.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 1.3-1.4
times the maximum current subjected to ZCT for IZCT topology

Auxiliary diode peak current:

1.3-1.4 times the maximum current subjected to ZCT turn-off for IZCT scheme, equal to the
maximum current subjected to ZCT for ZCT-NZVT configuration.

Timing of the auxiliary switch gate signals:

very easy for the IZCT technique, more complicated in ZCT-NZVT technique.

Behavior at main current lower than the maximum current subjected to ZCT turn-off:

201

tum-off hard switching of the auxiliary switch in ZCT-NZVT scheme at 25% of the maximum

current subjected to ZCT tum-off, regular even at 25% of the maximum current subjected to ZCT

tum-off for IZCT configuration.

Behavior at main current higher than the maximum current subjected to ZCT tum-off:

partial tum-off hard switching of the main switch in ZCT-NZVT scheme at 125% of the

maximum current subjected to ZCT tum-off, partial tum-off hard switching of the main switch in

IZCT scheme at 125% of the maximum current subjected to ZCT tum-off (however, the hard

switched current is lower than in ZCT-NZVT case).

5.3.8.6 Design of the Resonant Circuit

5.3.8.6.1 Resonant Inductor Design

Design input parameters:

inductance value Lx;

rated peak current (Ixpk) and rated rms current (Ixrms);

operating frequency (fD);

In order to carry on the design of the resonant inductor the following expressions are considered:

l^e-'^e-'e- 2
Bpk

L = MoM-A^-N^

^u) —~
^x ' ^ xpk ' ^xrms

Ir . T . A . R
'^cu "^xrms -^e " pk

where Ve, Ae, le and |xO|J, are respectively the volume, the cross section, the path length and the

magnetic permeability of the material in which the magnetic energy is stored; Bpk is the peak

flux density in the core; Aw, N, kcu and Jxrms are respectively the required winding area, the

202

number of turns, the fill factor and the current density considered for the inductor winding; from

simulation resuhs Ixrms is equal to 16.1k and 53.3A respectively for ZCT-NZVT and IZCT soft-

switching techniques.

The core material is chosen on the basis of the operating frequency; thus, the value of Bpk and

the magnetic permeability are found from data-sheet of the selected material.

The core size closest to the previous result is chosen among the options available on the market;

then, by using the previous expressions the actual values of Bpk, N, Lx and Aw are known.

Molypermalloy powder (MPP) core, high flux powder (HFP) core, Metglas core and ferrite core

have been investigated for the resonant inductor of the proposed soft-switching techniques; in

each design the copper fill factor and the winding current density have been considered equal

respectively to 0.6 and 6A/mm2.

MPP Core Inductor (Magnetics Inc.) [5]

5.3.8.6.1.1 ZCT-NZVT technique
Physical Characteristics Results from

(23)
(20) through

Part
Num.

N.of
Pcs.

Ext. Dim.
(wxhxl mm3)

lA Ae
(cm2)

le (cm) Bpk
(T)

Lx N Aw
(cm2)

55190-
A2

3 57.2x57.2x45.6 14 6.87 12.5 0.179 0.87 3 0.64

55902-
A2

2 77.8x77.8x31.8 14 4.54 19.95 0.15 0.64 4 0.85

55441-
A2

4 46.7x46.7x72 14 7.96 10.74 0.139 0.521 2 0.43

From material data-sheet the core losses can be roughly calculated:

expected core losses: 120mW (for all the three options)

203

5.3.8.6.1.2

5.3.8.6.1.- 5 IZCT technique
Physical Characteristics Results from (20) through

(23)

Part
Num.

N.of
Pcs.

Ext. Dim.
(wxhxl mm3)

H Ae
(cm2)

le (cm) Bpk
(T)

Lx
(HH)

N Aw
(cm2)

55869-
A2

2 77.8x77.8x25.4 14 3.54 20.0 0.145 1.525 7 1.02

55190-
A2

2 57.2x57.2x30.4 14 4.58 12.5 0.165 1.611 5 0.75

55441-
A2

3 46.7x46.7x54 14 5.97 10.74 0.153 1.564 4 0.59

Expected core losses: lOOmW (for all the three options)

HFP Core Inductor (Magnetics Inc.)

5.3.8.6.1.4 ZCT-NZVT technique
Physical Characteristics Resuhs from (20) through (23)

Part
Num.

N.of
Pcs.

Ext. Dim.
(wxhxl mm3)

JA Ae
(cm2)

le (cm) Bpk
(T)

Lx
(^H)

N Aw (cm2)

58933-
A2

2 26.9x26.9x22.4 14 1.308 6.35 0.47 0.58 4 0.85

58257-
A2

1 39.9x39.9x14.5 14 1.072 9.84 0.46 0.69 6 1.28

Expected core losses: lOOW (for all the two options)

204

5.3,8.6.1.5 IZCT technique
Physical Characteristics Results from

(23)
(20) through

Part
Num.

N of
Pcs.

Ext. Dim.
(wxhxl mm3)

[i- Ae
(cm2)

le
(cm)

Bpk
(T)

Lx N Aw
(cm2)

58327-
A2

1 35.8x35.8x10.5 14 0.678 8.98 0.504 1.606 11 1.63

58256-
A2

1 39.9x39.9x14.5 26 1.072 9.84 0.545 1.743 7 1.03

Expected core losses: lOOW (for the first core); 175W (for the second core)

Metglas Core Inductor (Magnetics Inc.)

5.3.8.6.1.6 ZCT-NZVT technique
Physical Characteristics Resuhs from (20) through (23)

Part Num. N.of
Pcs.

Ext. Dim.
(wxhxl mm3)

V^ Ae
.(cm?)

le
(cm)

Bpk
(T)

Lx
(HH)

N Aw
(cm2)

MC0012 1 34.95x50.8x12.7 1 1.06 0.17 0.95 0.725 3 0.64

Expected core losses: 72.5 W

205

5.3.8.6.1.7 IZCT technique
Physical Characteristics Results from (20) through (23)

Part
Num.

N.of
Couple

s

Ext. Dim.
(wxhxl mm3)

^ Ae
(cm?)

le
(cm)

Bpk
(T)

Lx
(MH)

N Aw
(cm2)

MC0009 1 28.58x49.3x12.7 1 0.907 0.17 0.864 1.672 5 0.75

Expected core losses: 47.5W

Ferrite Core Inductor (Magnetics Inc.) [9]

5.3.8.6.1.8 ZCT-NZVT technique
Physical Characteristics Results from (20) through (23)

Part
Num.

N.of
Couples

Ext. Dim.
(wxhxl mm3)

n Ae
(cm2)

le
(cm)

Bpk
(T)

Lx
(MH)

N Aw
(cm2)

P45528-
EC

2 54.9x55.2x41.2 1 • 7.0 0.48 0.221 0.725 2 0.43

P44924-
EC

2 49.1x47.6x31.3 1 5.14 0.36 0.3 0.725 2 0.43

P45530-
EC

1 54.9x55.2x24.6 1 4.17 0.65 0.246 0.725 3 0.64

Expected core losses : 15W(forthel irst opi don); 10\ V (for bo th the secc)nd and th e third core)

5.3.8.6.1.9

5.3.8.6.1.10

5.3.8.6.1.11 IZCT technique
Physical Characteristics Results from (20) through (23)

Part
Num.

N.of
Couples

Ext. Dim.
(wxhxl mm3)

M Ae
(cm2)

le
(cm)

Bpk
(T)

Lx
(MH)

N Aw
(cm2)

P45530-
EC

1 54.9x55.2x24.6 1 4.17 0.5 0.235 1.672 4 0.85

Expected core losses: lOW

206

5.3.8.6.2 A simple circuit for inductor experimental testing

The following circuital configuration can be adopted to test the inductance value of the assembled

inductors.

A dc current generator supplies the inductor L under testing in series with a resistor R having

resistance value very high if compared to the inductor resistance. At time t=0 the switch S is

closed, by monitoring the current flowing through the resistor and the voltage across the resistor it

is possible to achieve the indirect measurement of the inductance. In fact,

L = 0

where

(Z> = [F^ • dt

can be easily known by using modem scopes.

5.3.8.7 Resonant Capacitor Selection (Electronic Concepts Inc.)

5.3.8.7.1 ZCT-NZVT Technique

5PT46L104 O.ll^F, 1200V 4Pcs. or

PT88BN224 0.22M,F, 1200V 2 Pcs. or

PT88BN394 0.39^F, 1200V 1 Pc.

5.3.8.7.2 IZCTTechnique

5PT46M104 + 5PT46M823 0.1nF+0.082^F, 1500V 1+1 Pcs.

MT88BT184 0.18|xF, 1600V 1 Pc.

207

5.3.9 Experimental Verification of Soft Switched PEBBs

The old phase-legs developed in the previous project were upgraded to accommodate for soft

switching commutation. The resuhant phase leg structure is shown in Fig. 5-44, clearly depicting

both main and auxiliary switches, as well as the L-C series resonant tank. Fig. 5-45 shows actual

pictures taken from one of the upgraded PEBBs, clearly showing its main components, including

the current sensor. Fig. 5-46 shows the experimental setup used to test both studied algorithms,

and Fig. 5-47 and Fig. 5-48 show experimental results obtained. Particularly Fig. 5-47 shows the

on off transitions for the I-ZCT techniques and Fig. 5-48 the on off transitions for the ZV-ZCT

technique. The main result attained was the reduction of the commutation losses, which naturally

increases the efficiency of the PEBB and allows for high frequency operation without increasing

the thermal requirements of the converter system.

Fig. 5-44 Soft switching PEBB schematic built from old phase-leg by adding
auxiliary resonant circuit.

208

Fig. 5-45 Downwards and lateral views of Softswitching PEBB.

liiiS-- %•

-

 :i^-

i

,... * ■

'■■''a %,

,"^.. '

Fig. 5-46 Experimental setup used to test appropriate operation of the
softswitching PEBBs.

209

m-

 ^^-^L,^ii 11 II *iiil..^-^^-^-^^. . Jw It I II l|ti ffi WMB'-- ~'^- ■^aiiiiiiiiiiiiiii ii] ri.a.u , .--w.^.. ^_^%^

r iSChZ r 480 V
^. ■. '^ tg.t--- t . - ■ ■ ■ ^ . • ^

»wMid(CZ) 23S9WS twsgnalanvSw* ;iilwfC2i 22«0V
i*nt&ti -120V I

J

:.1,<* ^f,"', , ^-:

' r

"osVWOJ 23S9ie Un»siQfwiWT|«u<te ' !*«fC23 224BV

cu iai¥ mm m iig¥ SHBI

Fig. 5-47 Turn on and turn off transients for IZCT softswitching algoritlim.

ama^a^^mmi^f^i^^m^MmtammmaMf^

•i \

' . t '

OtS IWV I KB
CM !«W MtSB

Fig. 5-48 Turn on and turn off transients for ZV-ZCT softswitching algorithm.

shows the cabinet we used to run the test. Fig. 5-50 illustrates how a soft-switched PEBB can

be plugged into the cabinet. The circuit diagram of the DC-DC test is shown in Fig. 5-51. All the

tests run at:

210

Fig. 5-49 PnP compliant cabinet.

211

(a) PEBB slots on cabinet. (b) A soft-switched PEBB on the rail

^., — - - ^^' ■-

■ j;:' it -
H ■

. , '. ::.v^ ;r—?Hf 1 E
j : \'^ M' V

'1 Ifl 1/ : 1 ail 'SI •
j * .,^ MV"'-1 ^

f li^B ' ^f^ liH^HI c Hi • 1

«
i

iftii mm
;,::k^5 Efc .^^^m .»

: ;r^ ,^ HI!

* si

:>•
Jl

i;.^ : ^ / /
1 / / i 1 '1:"^

.

1 'i^lHlil^HBH • • -:' ■'•-

(c) A soft-switched PEBB plugged into the cabinet.

Fig. 5-50 Test soft-switched PEBB on the cabinet.

212

1PEBBDC+

IDC

-w-w-

SWITCHING

AC FILTER

AC PROTECTION

DC PROTECTION

POWER TERMINAL
BLOCK

OUTSIDE
CABINET

Fig. 5-51 Circuit diagram of DC-DC test for soft-switched PEBB.

We run the DC-DC test by generating constant duty cycle from the integrated hardware on

the soft-switched PEBB to verify whether the PEBB is able to work with cabinet properly. Fig.

213

5-52 shows the experimental waveform of this test. Cl is the input voltage; C2 is the voUage

across the bottom main switch; Ml is the output inductor current.

T6kBiPini5.00IVIS/S
I

535 Acqs

Ml

 ^r^%v^iMr
HVH

 ■■•%%yM*^

Cl Mean
45.3 V

Chi TOOV SI

Mathi lO.OmV lO.OjiS

OCTV M lO.OjJS Chi J 26V 23jul 2003
11:02:10

Fig. 5-52 DC-DC test waveforms of soft-switched PEBB, witli hardware manager

generating constant duty cycle.

We also did a similar DC-DC test with the PWM control information sent from the UC to the

hardware manager through PESNet. Fig. 6 6 shows the experimental waveforms with the constant

duty cycle (=0.4) received from the UC; while Fig. 6 7 shows the waveforms resulted from the

duty cycle change to 0.8 at the UC.

214

reKBiBinis.ooivis/s 101 Acqs

i->

■xjK^VfTfr^

rrtWirfSWPWiWbtoV'

^Wi/«nlJt*A ^\rf^iMfK^^^witJ, PiXt-VvtB^f^

Ghi ■ 'idd V mil -imv M 2O,OJJIS cm -v

C1 Freq
50.4601kHz
Low signal
amplitude

C1 +Duty
98.6%

Low signal
amplitude

C1 Higli
146 V

16 V 3ojUi 2003
23:^5:37

Fig. 5-53 DC-DC test waveforms of soft-switched PEBB, witli a constant duty cycle
(0.4) sent from UC.

TeKSHasooiviS/s
ft

130 Acqs

Cl Freq
24.«588kHz
LbWsignal
amplitude
Cl *Duty

99.3%
Low signal
Amplitude

Cl High
146 V

Ghi 100 V Ctii ico V M 20.0jiS Chl -v

•iSl!l.lll lO.-Om'y" ;|O.0jiS

16V 30Jul2:Qb3
23:25:00

Fig. 5-54 DC-DC test waveforms of soft-switched PEBB, with a constant duty cycle
(0.8) sent from UC.

215

IPEBBDC+ ITopSw

■ S

/ i

|35uF
VDC |,

I

^e

h

e

["TV VTopSw

Jl

65uH I 65uH(

-OH-D>h ^^-{>l-

60uF eOuF

?

IDC

^

ILOAD - 3

SWITCHING

AC FILTER

AC PROTECTION

DC PROTECTION

POWER TERMINAL
BLOCK

OUTSIDE
CABINET

11/3 Ohm 11/3 Ohm

< 11/3 Ohm

Fig. 5-55 Experimental set-up schematic for testing tlie new PEBB modules

216

5.4 Experimental Validation of New PEBB Modules

In order to verify the proper operation of power stage and new PEBB modules, tests were run

up to a DC link voltage of 200V. Particularly, the new PEBB was connected to operate in a buck

DC/DC converter mode with the bottom switch disabled all the time, and the top switch switching

at 20 kHz.

5.4.1 Buck dc-dc operation

The configuration used for the test is the same as that shown in Fig. 5-55. The variables

measured were Vdc, VTopSw, Idc, and Vload. The current was set at 5 A/lOmV and was

measured using a Tektronix Hall-Effect gun. All voltage measurements were made using

Tektronix high vohage differential probes.

C hannel Description Scale Notes

1 VTopSwitch 200V/div

2 VDC 200V/div

3 Idc 5A/div (Idiv = lOmV), Choke on BNC cable

4 Vload lOOV/div

217

Tek Blfaa SO.OMS/S S492 Acqs
E T

DPO Brightness: 57 %
]

m

1^

I^^WRSKW

■ihiH

■ "llii.i'ii. ilMBOT^BlHBil ' ' ' Ifif

CFfi 200 V
ana lo.omvQ

200 V IV120.0JJS Chi ^

C3 Mean
29.D1mV

C4 Max
132 V

C1 High
192 V

{Z4 ill e a 11
123."/V

28 V 25 Ju! 2003
21:16:49

Fig. 5-56 New PEBB operating in Buck dc-dc converter mode.

An expanded view of the switch turn off is shown below.

Channel Description Scale Notes

1 VTopSwitch 200V/div

2 VDC 200V/div

3 Idc 5A/div (Idiv = lOmV), Choke on BNC cable

4 Vload lOOV/div

218

Tek Effiia 500MS/S 180079 Acqs
t ,:|:

DPO Brightness: 57 %
]

tjiPiii|iiijLi;jCu#ii;@jiigiy*i...ktiuiiyiMi^

ii|in ■'irii"i"'<i^'

jEglpBlyngpllfttiiiipi

Chi 200 V or
ch3 lo.omvQ ;

HHfHi^PiiiiipiAilHjpMi

ivi 200ns Chi "V.

*i1mi

C3 Mean
14.69mV

C4 iviax
1 04 V

C1 High
192 V

Unstabie
histogram

C4 Mean

28 V 25Jul 2003
21:13:14

Fig. 5-57 Turn off transient of new PEBB operating in Buck dc-dc converter mode.

5.4.2 Pulse Test Results

A two-pulse test was performed in order to show the phase leg could safely switch at high

power and EMI levels. The output of Phase C was shorted to the negative DC rail, making the

load of Phase C to be the 216uH inductor. The schematic shown in Fig. 5-58 was created using

the cabinet and the new phase leg. This test consists of two pulses as shown in Fig. 5-59. The

first pulse is large, with the intention of building the current up to the test level. The second pulse

is a typical PWM pulse. This pulse is repeated once per second, which makes the power very

small while testing large currents. The measured waveform is shown in Fig. 5-60.

219

Universal
Controller

216uH

A
t^i

Fig. 5-58 Pulse test schematic using a new PEBB module for ElVII verification

Goes to 0 Amps

slope=
Vdc

Inductor
Current

Inductor
Voltage

lOOuS
-M—N—►

25uS 25uS

Fig. 5-59 Pulse test applied for ElVII verification.

220

Channel Description Scale Notes

1 VTopSwitch 200V/div Zero when switch is on

2 VDC 200V/div

3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable

4 Iload 50A/div (Idiv = lOmV), Choke on BNC cable

TeK Run: S.OOMS/s Sample
(T

>l^Jlf IM—I JtMM^^Iwlll JPWI_I1«*<

i: j jnm Mnifin I ,— -•"-"■'—-ff-j-f^j-

-.'^■•.f.xw: .■.■!-''im-v (iii?..,!^Af ;v?^sfc.(.K;..* wm??i frv -Af-^i^'^-'"-%.-A....f^j.^^'

^'^}^\^M^ti^^4'i^Wi^fm^^ .**.v.,<^^^^

Chl 100 V
Ch3 lO.OmVQ

C1 Freq
7.9255kHz
Low signal
amplitude

C1 +Duty
18.8%

Low signal
amplitude

C1 High
146 V

M 20.0JJIS Ch3 1. 9.0mV 30 Jul 2003
14:57:47

Fig. 5-60 Experimental results showing that the current returns to zero after 12ms.

The current peak can be calculated for turn on:

VT 150 100//

L 216//
= 69.4^

For turn off, the current peak is:

L 216//

221

A pulse testing interface was written in VHDL to create a waveform similar to that shown in

Fig. 5-60 channel 1. This was used in place of the PWM generator, and the values were

controlled from the fiber optic interface. A series diode was added to prevent the negative current

from flowing back into the power supply. The diode can be seen blocking the negative current in

Fig. 5-61.

Channel Description Scale Notes

1 VTopSwitch 200V/div

2 VDC 200V/div

3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable

4 Iload 50A/div (Idiv = lOmV), Choke on BNC cable

Tek Run: 25.0kS/s Sample
r ,"|n

iiLfiiwAiinp<idh>n^MWMni

,i ^!.,' -^-, 4., - p.- A-.fJf'!^/:^^. k^

3-+ ;^y*Wri^W'4;^>'M^w

Chi 100 V 'i
Ch3 lO.OmVil •

;l^fe».;^»'-.«s,,*t&.:?^ii-'e^,-;-M^..i«!^f ,^4*r ,;:ri!, -*rt--« f<>.>^gs!i>yM

ift^w y iHwiMMihiiVtlurfHW**!.^*!* ^ *■l^Ay^rf^■■^^rii■^l^*l^*^^u*^^Hil*ld^F■ <(»44&<
No period

found

C1 +Duty
.... -oo %

Wfm does not
"\. cross ref

T-' C1 High
150 V

• :y

100 V ivi4.bbnis: ch3 \ g.omv
o.oitivo ■ : ; :

Type
<Edg€>

Source
Ch3

Coupling
DC

Slope

Edge Source

Chi

Ch2

Ch4

-more-
1 of 2

Level
9.0mV

Mode
&

Holdoff

Fig. 5-61 Experimental test with series diode in dc path to avoid negative currents in
the power supply.

222

Channel Description Scale Notes

1 VTopSwitch 200V/div

2 VDC 200V/div

3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable

4 Iload 50A/div (Idiv = lOmV), Choke on BNC cable

ieKjiiSlI 1BI.OOMS/S 7 Acqs

■ '??-^-..*-i ,!!„..;* .sijt.„ Vl„.... AB« f t, i,a^.)/f» ,'^foB>; ^'4»i^«-.il^i;,4r-. i-fS--"^^ J.-n-C^'^-^ ,v^:.aM!sJwM™CT« < j",-

^j....iif iiirt^nii lyintjii.ff jA^" ^(I'l'i. ■'.V»IJ'IM,IIMI nf

: : r :

'^'**f'«ou :,

'i^HH^(s^>*wMM*Vv»*''^**iH^

Chi 100V

C1 Freq
7.9348kHz
Low signal
amplitude

Cl +Duty
18.3%

Low signal
amplitude

Cl High
150 V

Ch3 lO.omVfl ■.; lO.OiiiVQ
100 V IVI lOOjJS Ch3 "V 9.0mV 30 Jul 2003

14:54:39

Fig. 5-62 Expanded view of transient in Fig. 5-61.

The following waveforms in Fig. 5-63 show that a peak power of 22.5 kW was achieved at

150A and 150V.

223

Channel Description Scale Notes

1 VTopSwitch 200V/div

2 VDiode lOV/div

3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable

4 noad 50A/div (Idiv = lOmV), Choke on BNC cable

leK Kun : SOOkS/s Sample
[; T-

3-»

■w™'~'^^rTinAT^i^W^|i T1" ^ '^'Vi^

,t...^"-.:-S!^^-,^S-tt^-V:KWS-S-S;-.,-V:^,';5i^i-

■ ,vi.,HiV¥'Wji^**f'#*W'W'

cFn100V
Ch3 lO.OmVQ

^■^ ■U^iliBMBiwiu wmipi^mi^iinH irtiiiil ifti '^■^■■ii i

mu

*^|^l^i4^)^^fm^,!^^

Cha
10,0 V

ICOrriVQ
M 200jas Chi -v

Cl Freq
4.38718kHz
Low signal
amplitude

Cl +Duty
10.4%

Low signal
amplitude

Cl High
162 V

C4 Freq
™ Hz

No period
foiincl

40 V 30Jul 2003
17:42:33

Fig. 5-63 High frequency oscillations observed

5.4.3 Impedance measurements

As shown in the previous results extrinsic oscillations were observed at the commutation

instant. In order to study and characterize this phenomenon then impedance measurements using

an analyzer were performed. Specifically, the DC impedance, ZDC, was measured using an

Agilent 4294A impedance analyzer with the 42941A impedance probe attachment. This is the

impedance from the DC positive bus contactor to the DC negative bus contactor. The new phase

224

leg was plugged into slot A having the contactors are open as shown in Fig. 5-64. Fig. 5-65 shows

the results obtained. The switching filter can be seen with the peak at 5 kHz, but for high

fi-equencies, the inductance will prevent the filter fi-om working as intended.

IDC -

SWITCHING

AC FILTER

AC PROTECTION

DC PROTECTION

POWER TERMINAL
BLOCK

OUTSIDE
CABINET

Fig. 5-64 DC Impedance measurement schematic

225

fl: IZI TOP
B: Bz SCALE

PRB

Hid

5 kn BOTTOM
36 o/div REF

10 ma
0 o

URC —
START ^0 Hz

IflC
OSC 500 uiVolt

22.9728 ma c,,„ »„»». 8.^'1523 " rile Ncime:

SELECT
LETTER ...: ; [..I L...:...: i L..;i.5:.7179(18..kHz

i Iu i.lJ i..i.i u.i im
:r:::|:}:|:::|:iX::!:t[::|:rt:::| B
::|:::::|::::;pVEg::::::j::::|:::p ■H

J i.ij L.IJ i-,ll3±j;::::;:l:; ..;...
\

^^

■j \"T"\ :■■■•:■■■: :'y^ : :'5;'7i79il8 kH;

P
\ J3^fi rp^-\ rl i H r .y

T\: : lyfl M ; Ml Ml

rn^f'FfrT
U/IDC —

STOP 110 MHz

SPACE

BACK
SPACE

CLEAR
NAME

STORE DEV
[FLOPPV]

done

cancel

Fig. 5-65 DC Impedance test on the cabinet.

The impedance of the load plus the filter was also characterized, which corresponds to

impedance seen by the PEBB module as shown in Fig. 5-66. These results are shown in Fig. 5-67.

226

IPEBBDC+ ITopSw

VTopSw

h

ZLOAD+FILT

SWITCHING

65uH 65uH(

^^-ol- -OhH>^

60uF 60uF

VLoad

AC FILTER

e

$ ^

IDC —r

^

ILOAD -

AC PROTECTION

11/3 Ohm 11/3 Ohm

< 11/3 Ohm

DC PROTECTION

POWER TERMINAL
BLOCK

OUTSIDE
CABINET

Fig. 5-66 Load impedance measurement setup.

227

fl: |Z| TOP
B: Bz SCALE

PRB

500 a BOTTOM
20 «/cJiv REF

200 mn
0 o

Hid

VfiC —
START -10 Hz

jp(;
OSC 500 mVolt

259.953 n cii„ u„m».
22.7iq^2 * rile Ncime:

SELECT
LETTER

SPACE

V/IDC —
STOP 110 MHz

BACK
SPACE

CLEAR
NAME

STORE DEV
[FLOPPY]

done

cancel

Fig. 5-67 Load impedance measurement results.

5.5 Conclusion

The design of PEBB-based power electronics systems is not only an electrical system design

procedure, but has transformed into a multivariable optimization scenario. Physical distributions

and structural functionality now play a key role in determining the electrical behavior of the final

structure. These basically set parasitic parameters, efficiency, size, volume, reconfiguration

capabilities, as well as overall functionality in terms of the PEBB-based power conversion

system. Fundamental research in electromagnetic and physical characteristics of such a

distributed structure converter is hence required. With an effort on this area good design criteria

will be established in conformity with the concepts involved with this novel approach.

228

6 CONCLUSIONS

This work has investigated an open system design approach for developing Plug and Play

PEBB-based power electronics systems. The main objective was to investigate standardized

control and communications systems and architectures. The research effort was primarily focused

on three distinctive thrusts, namely development of a Universal Controller, development of

dataflow-based architecture software for distributed control systems, and development of a

Hardware or Power Stage Manager. The main results are summarized as follows.

A Universal Controller board was fully designed, manufactured, and experunentally tested

and evaluated. The controller proved its enhanced and powerful computational capabilities

attained by its DSP-FPGA based digital system architecture. It also presented an unparalleled

flexibility, achieved by the inclusion of JTAG connectors for both DSP and FPGA, of 88 I/O pins

connected directly to the FPGA, and its PCI interface. All these provide an outstanding visibility

into the controller digital system, greatly simplifying any type of design or evaluations. The board

was experimentally verified in all its capabilities by communicating through the upgraded

PESNet protocol with similar Universal Controllers, with the new Hardware Manager -

performing PWM control over the new PEBB modules-, and also effectively communicating with

the previously developed PEBBs upgraded to soft switching capacity. The results obtained have

been extremely encouraging, showing a great operational reliability and a significant

simplification of the design process. Future results are expected as part of the new project

Standard Cell, Open Architecture Power Conversion Systems.

Regarding control software architecture, this project continued with CPES work on

embedded control systems proposing a power electronics control software built over standardized

ECO. A second version of the control system kernel DARK was finalized and successfully tested

through thorough analyses and computer evaluations. In order to study any possible effects of the

programming language in the performance of the kernel and hence control system DARK was

also implemented using C++, which in general provided a better and more structured way of

extending data chaimels. The PESNet protocol for communications was upgraded and modified

adding significant new capabihties, thus increasing the overall reliability of PEBB-based power

electronics systems. This protocol was further improved by developing transparent messaging

between Universal Controllers across the double-ring fiber optic network. Finally, commercial

software platforms for developing embedded control systems were also studied and compared to

229

the proposed dataflow architecture system, where the latter presented more flexible real-time

control options, eased the design of distributed control systems, and required significant less

redesign efforts. The main disadvantage still remains the lack of a graphical development

environment.

On the development of the Hardware Manager, or power stage controller, excellent and

encouraging results were attained. In a much shorter design, manufacture, and verification

process than the Universal Controller, the Hardware Manager proved its outstanding

performance, reliability, and simpUcity. Numerous tests actually showed the good performance

and operation of the board when communicating through the optic-fiber network with the

Universal Controller, and when controlling the new PEBB modules for which it was designed.

Electrical and thermal variable readings have been effectively measured and used as part of the

control and protection system of the new PEBBs. The success of this board is a direct

consequence of all the previous experience gained through the Universal Controller.

Finally, as part of the validation process for the proposed PnP PEBB-based power electronics

system a partitioning study was performed to determine the feasible physical, energy, and

information boundaries proper to such systems and PEBBs in particular. Correspondingly a

PEBB-compliant power stage was designed and built. Previously built 33 kW PEBB modules

were upgraded to accommodate for soft switching capability, and new 33 kW PEBB modules

using the newly developed Hardware Manager were designed and manufactured. Individual tests

with PEBB modules were realized in order to verify their correct operation, both for soft switched

and the newly developed ones. Communications tests were also successfiiUy performed between

the old and new PEBB modules and the Universal Controller, which effectively controlled these

boards. Full verification of the PEBB modules, specifically on the new ones, is still under way in

order to ensure their correct operation not only in terms of their fiinctionality but also regarding

potential problems such as isolation, thermal, and EMI. Full validation of the different topologies

that may be realized with the proposed PnP PEBB-based power electronics systems will be

realized as part of the new project Standard Cell, Open Architecture Power Conversion Systems.

230

REFERENCES

[i]M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall,
1996.
[ii]R.Allen and D. Garlan, "A formal approach to software architecture," In Jan van Leeuwen, ed..
Proceedings ofIFIP'92. Elsevier Science Publishers B.V., September 1992.
[iii]A.L. Davis, and R. M. Keller, "Dataflow program graphs", IEEE Computer, vol. 15, no.2, Feb, 1982,
pp.26-41.
[iv]D. E. Culler. "Dataflow architectures." Annual Review of Computer Science, vol. 1. Annual Reviews
Inc.. Palo Alto. CA, 1986.
[v]B. S. Shuvra, P. K. Murthy, and E.A. Lee Software synthesis from dataflow graphs, Kluwer Academic
PubHshers, Boston ,1996.
[vi]K. Singh, "Design and Evaluation of an Embedded Real-time Micro-kernel," M.S. thesis. Department of
Computer Science, Virginia Tech, 2003.
[vii] C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment", Journal of the ACM, Vol. 20, No. 1, pp. 46-61.
[viii]J.J. Labrosse, MicroC/OS-II, The Real-time Kernel, R&D Books, Oct. 1998.
[ix]Analog Devices website, http://www.analog.com/.
[x]"Protocol Design of Dual Ring PESNet (DRPESNet)" CPES 2002 Power Electronics Seminar and
NSF/Industry Annual Review, April 2002.
[xi]MathWorks Simulink web site, http://ww--\v.mathworks.com/'products/simulink/.
[xii]MathWorks Real-Time Workshop web site, http://www.mathworks.com/productsntw/.
[xiii]MathWorks Real-Time Workshop Embedded Coder web site,
http ://wv\^^mathw^orks .com/products/rtwembedded.
[xiv]Parool Mody and Stephen H. Edwards, "Distributed Communication Protocol for Power Electronics
System,"CPES Seminar, Virginia Tech, Blacksburg, VA, 2003
[xv] I. Celanovic, "A Distributed Digital Controller for Power Electronics Systems", M. Sc. Thesis,
Virginia Tech, 2000.
[xvi] N. Hingorani, L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC
Transmission Systems, IEEE Press, Piscataway NJ, 2000
[xvii] L. Gyugyi et al., "Apparatus and method for dynamic voltage restoration of utility distribution
networks", U.S. Patent 5 329 222, July 12,1994
[xviii] Y. Liang, C. Nwankpa, "A new type of STATCOM based on cascading voltage source inverters
wath phase-shifted unipolar SPWM", Industry Applications Conference, Thirty-Third IAS Annual Meeting,
1998, Vol.2, pp. 1447-1453
[xix] I. Celanovic et al, "A new control architecture for future distributed power electronics systems".
Power Electronics Specialists Conference PESC 2000, Vol. 1, pp. 113-118
[xx] G.. Hua, E. Yang, Y. Jiang, F. C. Lee, "Novel Zero-Current-Transition PWM Converters," in Proc.
PESC'93, pp. 538-544.
[xxi]H. Mao, F. C. Lee, X. Zhou, D. Boroyevich, "Improved Zero-Ciurent Transition Converters for High
Power Applications," IEEE Trans. Ind. Applicat. Vol. 33, n. 5,1997.
[xxii] Y. Li, F. C. Lee, J. Lai, D. Boroyevich, "A Novel Three-Phase Zero-Current-Transition and Quasi-
Zero-Voltage-Transition (ZCT-QZVT) Inverter/Rectifier with Reduced Stresses on Devices and
Components," in Proc. APEC'OO, pp. 1030-1036.
[xxiii]Y. Li, F. C. Lee, "A Comparative Study of a Family of Zero-Current-Transition Schemes for Three-
Phase Inverter Applications," in Proc. APEC'Ol, pp. 1158-1164.

231

